Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquid solutions process

Introduction Many present-day commercial gas absorption processes involve systems in which chemical reactions take place in the liquid phase. These reactions generally enhance the rate of absorption and increase the capacity of the liquid solution to dissolve the solute, when compared with physical absorption systems. [Pg.1363]

Another example of a cost-effective liquid-liquid extraction process is the one used for recoveiw of uranium from ore leach liquors (Fig. 15-3). In this case the solvents, alkyl phosphates in kerosine, are recovered by liquid-liquid extraclion using a strip solution, and the... [Pg.1449]

The feed to a liquid-liquid extraction process is the solution that contains the components to be separated. The major liquid component in the feed can be referred to as the feed solvent. Minor components in solution are often referred to as solutes. The extraction solvent, or just plain solvent, is the immiscible liquid added to a process for the purpose of extracting a solute or solutes from the feed. The extraction-solvent phase leaving a liquid-liquid contactor is called the extract. The raffinate is the liquid phase left from the feed after being contacted by the second phase. A wash solvent is a hquid added to a liquid-liquid fractionation process to wash or enrich the purity of a solute in the extract phase. [Pg.1449]

The main objective for calculating the number of theoretical stages (or mass-transfer units) in the design of a hquid-liquid extraction process is to evaluate the compromise between the size of the equipment, or number of contactors required, and the ratio of extraction solvent to feed flow rates required to achieve the desired transfer of mass from one phase to the other. In any mass-transfer process there can be an infinite number of combinations of flow rates, number of stages, and degrees of solute transfer. The optimum is governed by economic considerations. [Pg.1460]

The photochemistry of carbonyl compounds has been extensively studied, both in solution and in the gas phase. It is not surprising that there are major differences between the photochemical reactions in the two phases. In the gas phase, the energy transferred by excitation cannot be lost rapidly by collision, whereas in the liquid phase the excess energy is rapidly transferred to the solvent or to other components of the solution. Solution photochemistry will be emphasized here, since both mechanistic study and preparative applications of organic reactions usually involve solution processes. [Pg.753]

The second solution that results from the liquid-liquid extraction process is a high-purity niobium-containing solution. This solution is used in the preparation of niobium oxide, Nb205. The process is similar to the above-described process of tantalum oxide preparation and consists of the precipitation of niobium hydroxide and subsequent thermal treatment to obtain niobium oxide powder. [Pg.255]

Tantalum and niobium oxides, Ta2Os and Nb2Os, are among the final products obtained from tantalum and niobium strip solutions following liquid-liquid extraction processes. The strip solutions of tantalum and niobium consist of solutions of fluorotantalic and oxyfluoroniobic acids, H2TaF7 and H2NbOF5, respectively. [Pg.292]

The unique advantage of the plasma chemical method is the ability to collect the condensate, which can be used for raw material decomposition or even liquid-liquid extraction processes. The condensate consists of a hydrofluoric acid solution, the concentration of which can be adjusted by controlling the heat exchanger temperature according to a binary diagram of the HF - H20 system [534]. For instance, at a temperature of 80-100°C, the condensate composition corresponds to a 30-33% wt. HF solution. [Pg.314]

Potassium heptafluorotantalate, K2TaF7, or as it is called by its commercial name K-salt, is a starting material for tantalum metal production. K-salt is produced by adding potassium fluoride, KF, or potassium chloride, KC1, to a tantalum strip solution that results from a liquid-liquid extraction process. In order to prevent hydrolysis and co-precipitation of potassium oxyfluoro-tantalate, a small excess of HF is added to the solution [24]. Another way to avoid the possible formation and co-precipitation of oxyfluoride phases is to use potassium hydrofluoride, KHF2, as a potassium-containing agent. The yield of the precipitation depends mostly on the concentration of the potassium-containing salt and is independent of the HF concentration [535]. [Pg.316]

It is clear that nonconfigurational factors are of great importance in the formation of solid and liquid metal solutions. Leaving aside the problem of magnetic contributions, the vibrational contributions are not understood in such a way that they may be embodied in a statistical treatment of metallic solutions. It would be helpful to have measurements both of ACP and A a. (where a is the thermal expansion coefficient) for the solution process as a function of temperature in order to have an idea of the relative importance of changes in the harmonic and the anharmonic terms in the potential energy of the lattice. [Pg.134]

Orientation, wet stretching For plastics whose glass transition temperature (Tg) is above their decomposition temperature, orientation can be accomplished by swelling them temporarily with plasticizing liquids to lower their Tg of the total mass, particularly in solution processing. As an example, cellulose viscous films can be drawn during coagulation. Final removal of the solvent makes the orientation permanent. [Pg.640]

A liquid solution may be separated into its constituents by crystallising out either pure solvent or pure solute, the latter process occurring only with saturated solutions. (At one special temperature, called the cryohydric temperature, both solvent and solute crystallise out side by side in unchanging proportions.) We now consider what happens when a small quantity of solute is separated from or taken up by the saturated solution by reversible processes. Let the saturated solution, with excess of solute, be placed in a cylinder closed below by a semipermeable septum, and the w7hole immersed in pure solvent. The system is in equilibrium if a pressure P, equal to the osmotic pressure of the saturated solution when the free surface of the pure solvent is under atmospheric pressure, is applied to the solution. Dissolution or precipitation of solute can now be brought about by an infinitesimal decrease or increase of the external pressure, and the processes are therefore reversible. If the infinitesimal pressure difference is maintained, and the process conducted so slowly that all changes are isothermal, the heat absorbed when a mol of solute passes into a solution kept always infinitely... [Pg.302]

Sorbitol is produced by a gas-liquid-particle process in which a solution of glucose is hydrogenated in the presence of a solid catalyst consisting of nickel on diatomaceous earth carrier (B6). [Pg.76]

A generalized scheme, which summarizes certain of the most frequently observed kinetic characteristics for the reactions of a solid alone or with a gas, a liquid (solute) or another solid, is given in Table 2. The following processes may control the rate of product formation. [Pg.12]

Life as we know it depends on this existence of water as a liquid. Biochemical processes require free movement of chemicals, which cannot occur in the solid phase. Biochemical stmctures contain many interlocking parts that would not be stable in the gas phase. Thus, the liquid phase is best suited for life. Moreover, water is an excellent solvent, particularly for molecules that can form hydrogen bonds. As we describe in Chapter JA, the molecular building blocks of living matter are rich in groups that form hydrogen bonds. This allows biological molecules to be synthesized, move about, and assemble into complex structures, all in aqueous solution. [Pg.845]

C14-0034. Describe the dispersals and constraints that accompany the following processes (a) Ocean waves wash away a sand castle, (b) Water and acetone, two liquids, mix to form a homogeneous liquid solution, (c) In the child s game pick up sticks, a bundle of sticks is dropped to the floor, (d) Water evaporates from a puddle after a summer shower. [Pg.1032]

The same principle is used for the preparative separation of mixtures of biological materials, the extraction of different individual components from these mixtures, and their purification. In this case one uses an electrophoretic method with continued introduction of individual portions of the mixture and withdrawal of portions of pure fractions. There have been reports that such processes were accomplished in spacecraft where, since gravitational forces are absent, the liquid solutions can be used without the danger of natural convection. [Pg.592]

In liquid-solid processes reaction takes place between a liquid reactant and an insoluble or sparingly soluble solid which must be finely divided to speed up the process. Another measure to accelerate the process is to use an aqueous solution of a phase-transfer agent (typically a quaternary ammonium salt). The solid can also be a catalyst for reactions between liquid components, e.g. in acylations, carried out both conventionally in the presence of metal chlorides (mostly AICI3) or catalysed by zeolites and Grignard reactions. [Pg.261]

The methods described in this chapter can be transferred to liquid sorption processes with slight modifications. The example of concentrated salt solutions and water absorption is described by Kessling [6],... [Pg.408]


See other pages where Liquid solutions process is mentioned: [Pg.351]    [Pg.669]    [Pg.351]    [Pg.669]    [Pg.361]    [Pg.820]    [Pg.854]    [Pg.2925]    [Pg.317]    [Pg.32]    [Pg.257]    [Pg.1229]    [Pg.1289]    [Pg.59]    [Pg.65]    [Pg.417]    [Pg.480]    [Pg.323]    [Pg.82]    [Pg.1001]    [Pg.5]    [Pg.309]    [Pg.167]    [Pg.550]    [Pg.158]    [Pg.123]    [Pg.132]    [Pg.155]    [Pg.280]    [Pg.42]    [Pg.293]    [Pg.51]    [Pg.125]    [Pg.624]   
See also in sourсe #XX -- [ Pg.257 ]




SEARCH



Solute process

Solution processability

Solution processes

Solution processing

Solutizer process

© 2024 chempedia.info