Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquid sessile drop

Figure C2.11.8. An illustration of the equilibrium contact (i.e. wetting) angle, ( ), fonned by the balance of interfacial energies for or a liquid (sessile) drop on a flat solid surface. Figure C2.11.8. An illustration of the equilibrium contact (i.e. wetting) angle, ( ), fonned by the balance of interfacial energies for or a liquid (sessile) drop on a flat solid surface.
Liquid Sessile Drop Surface Tension (Vly) (dynes/ cm) Contact Angle (0) or Spreading Behavior of Drop ... [Pg.59]

Liquid sessile drop Surface tension dynesj cm) Contact angle (degrees) ... [Pg.74]

Fig. 3. Sessile drop with equilibrium contact angle 6 displacement of edge a distance dx (s solid 1 = liquid v = vapour). Fig. 3. Sessile drop with equilibrium contact angle 6 displacement of edge a distance dx (s solid 1 = liquid v = vapour).
Fig. 5. Sessile drop on a rough surface true contact angle BTA and apparent contact angle BTH. Thick curve = surface of solid (s) thin curve = surface of liquid (1) v = vapour. T is the triple point HTR a horizontal AT a tangent to the solid surface BT a tangent to the liquid surface. Fig. 5. Sessile drop on a rough surface true contact angle BTA and apparent contact angle BTH. Thick curve = surface of solid (s) thin curve = surface of liquid (1) v = vapour. T is the triple point HTR a horizontal AT a tangent to the solid surface BT a tangent to the liquid surface.
We can consider the spreading of a sessile drop on a soft, lossy substrate rather like the advance of a negative crack and thus use fracture mechanics concepts, as was the case in the derivation of Eq. (15) for the separation of an elastomer from a rigid solid. The term negative is used since the spreading of a drop leads to the creation of solid/liquid interface rather than separation. [Pg.295]

To investigate the influence of swelhng of the substrate by the contacting liquid, the contact angle 6 of sessile drops of tricresylphosphate, TCP (drop volume 2 p,L, viscosity t = 70 cP, surface tension = 40.9 mN m ), has been measured as a function of time after deposition, t, on flat, smooth, horizontal surfaces of soft and rigid solids at 20°C. The method of measurement of contact angle is the same as in Section Ill.A. [Pg.298]

The sessile drop method has several drawbacks. Several days elapse between each displacement, and total test times exceeding one month are not uncommon. It can be difficult to determine that the interface has actually advanced across the face of the crystal. Displacement frequency and distance are variable and dependent upon the operator. Tests are conducted on pure mineral surfaces, usually quartz, which does not adequately model the heterogeneous rock surfaces in reservoirs. There is a need for a simple technique that gives reproducible data and can be used to characterize various mineral surfaces. The dynamic Wilhelmy plate technique has such a potential. This paper discusses the dynamic Wilhelmy plate apparatus used to study wetting properties of liquid/liquid/solid systems important to the oil industry. [Pg.560]

One of the most common ways to characterize the hydrophobicity (or hydrophilicity) of a material is through measurement of the contact angle, which is the angle between the liquid-gas interface and the solid surface measured at the triple point at which all three phases interconnect. The two most popular techniques to measure contact angles for diffusion layers are the sessile drop method and the capillary rise method (or Wihelmy method) [9,192]. [Pg.251]

For the DMFC, Zhang et al. [127] used the sessile drop method to study the wettabilities of liquid methanol solutions on the surface of the anode DLs and MPLs. They were able to observe that the contact angles of the materials were the smallest with low PTFE content. In addition, the effect of Nafion ionomer content on the MPL (to increase hydrophilicity see Section 4.3.2) was also shown through the contact angle measurements (i.e., smaller contact angles compared to MPLs with PTFE). [Pg.251]

Lim, C. Wang, C. Y. Measurement of contact angles of liquid water in PEM fuel cell gas diffusion layer (GDL) by sessile drop and capillary rise methods. Penn State University Electrochemical Engine Center (ECEC) Technical Report no. 2001 03, Perm State University State College, PA, 2001. [Pg.525]

The antistatic properties of the step 2 product were evaluated by preparing tapes of blends with polystyrene by extruding in a twin-screw extruder using a flat die at 200°C. The contact angle of the tapes was measured using the sessile drop method and water as the measuring liquid. Testing data not supplied by author. [Pg.246]

The Bashforth-Adams tables provide an alternate way of evaluating 7 by observing the profile of a sessile drop of the liquid under investigation. If, after all, the drop profiles of Figure 6.15 can be drawn using 0 as a parameter, then it should also be possible to match an experimental drop profile with the (3 value that characterizes it. Equation (85) then relates 7 to 0 and other measurable quantities. This method is claimed to have an error of only 0.1%, but it is slow and tedious and hence not often the method of choice in practice. [Pg.281]

Provides measuring techniques of contact angle, surface tension, interfacial tension, and bubble pressure. Suitable methods for both static and dynamic inteifacial tension of liquids include du Nous ring, Wilhelmy plate, spinning drop, pendant drop, bubble pressure, and drop volume techniques. Methods for solids include sessile drop, dynamic Wilhelmy, single fiber, and powder contact angle techniques. [Pg.646]

Important techniques to measure the surface tension of liquids are the sessile drop method, the pendant or sessile bubble method, the Du-Notiy ring tensiometer, and the Wilhelmy-plate method. [Pg.24]

If a moderately large area of flat solid surface is available, contact angles are usually measured directly from a projection of a sessile drop of the liquid. Alternatively, the tilting-plate method illustrated... [Pg.156]

The Young-Laplace equation forms the basis for some important methods for measuring surface and interfacial tensions, such as the pendant and sessile drop methods, the spinning drop method, and the maximum bubble pressure method (see Section 3.2.3). Liquid flow in response to the pressure difference expressed by Eqs. (3.6) or (3.7) is known as Laplace flow, or capillary flow. [Pg.61]

One can measure the maximum pressure that can be applied to a gas bubble at the end of a vertical capillary, of radius r and depth t in a liquid, before it breaks away (Figure 3.13) [143], Before break-away the bubble has the shape of a sessile drop and is described by the equation of Bashforth and Adams. The pressure in the tube is the sum of the hydrostatic pressure (Apgt) and the pressure due to surface tension. Equations have been published which allow calculation of surface tension using Bashforth-Adams and density and depth data. [Pg.69]

The sessile drop method, described in Section 3.2.3, can also be used for the determination of contact angle. A sessile drop is created as for surface tension measurement, but instead of measuring drop shape, the contact angle (0) is measured through the liquid phase (Figure 3.16). This can be done using a goniometer. [Pg.74]

There are static and dynamic methods. The static methods measure the tension of practically stationary surfaces which have been formed for an appreciable time, and depend on one of two principles. The most accurate depend on the pressure difference set up on the two sides of a curved surface possessing surface tension (Chap. I, 10), and are often only devices for the determination of hydrostatic pressure at a prescribed curvature of the liquid these include the capillary height method, with its numerous variants, the maximum bubble pressure method, the drop-weight method, and the method of sessile drops. The second principle, less accurate, but very often convenient because of its rapidity, is the formation of a film of the liquid and its extension by means of a support caused to adhere to the liquid temporarily methods in this class include the detachment of a ring or plate from the surface of any liquid, and the measurement of the tension of soap solutions by extending a film. [Pg.363]

Measurements on molten metals. The maximum bubble pressure method has proved one of the most satisfactory, but sessile drops, and drop-volumes have also been used with success.2 The principal difficulty lies in the proneness of metals to form skins of oxides, or other compounds, on their surfaces and these are sure to reduce the surface tension. Unless work is conducted in a very high vacuum, a freshly formed surface is almost a necessity if the sessile bubble method is used, the course of formation of a surface layer may, if great precautions are taken, be traced by the alteration in surface tension. Another difficulty lies in the high contact angles formed by liquid metals with almost all non-metallic surfaces, which are due to the very high cohesion of metals compared with their adhesion to other substances. [Pg.387]

Static contact angle measurement of the sessile drop. The contact angle, 6C, is the angle formed by a liquid drop at the three-phase boundary where a liquid, a gas, and a solid intersect. It depends on the interfacial surface tensions between gas and liquid nGL, liquid and solid nLS, and gas and solid IIGS, as given by Young s6 equation of 1805 ... [Pg.275]

Table II presents the results of some wettability measurements on adsorbed monolayers prepared from molten Compound D on pure, polished, clean, chromium surfaces after solvent treatment had been used to remove all surplus solidified acid. A series of successive solvent treatments was applied to each coated specimen (see first four columns of Table II) using liquids which have been shown to be good solvents for Compound in the bulk (9). These liquids were either absolute ethyl alcohol or benzene at or above 20°C., or n-hexane at or above 60°C. In the remaining columns are listed the average values of the slowly advancing contact angles measured by the drop-buildup method on from three to five different drops. Measurements were made on sessile drops of water, thiodiglycol, and methylene iodide. These three diagnostic liquids were chosen because of their high surface tensions (72.8, 54.0,... Table II presents the results of some wettability measurements on adsorbed monolayers prepared from molten Compound D on pure, polished, clean, chromium surfaces after solvent treatment had been used to remove all surplus solidified acid. A series of successive solvent treatments was applied to each coated specimen (see first four columns of Table II) using liquids which have been shown to be good solvents for Compound in the bulk (9). These liquids were either absolute ethyl alcohol or benzene at or above 20°C., or n-hexane at or above 60°C. In the remaining columns are listed the average values of the slowly advancing contact angles measured by the drop-buildup method on from three to five different drops. Measurements were made on sessile drops of water, thiodiglycol, and methylene iodide. These three diagnostic liquids were chosen because of their high surface tensions (72.8, 54.0,...

See other pages where Liquid sessile drop is mentioned: [Pg.74]    [Pg.175]    [Pg.74]    [Pg.175]    [Pg.9]    [Pg.29]    [Pg.362]    [Pg.33]    [Pg.181]    [Pg.374]    [Pg.172]    [Pg.251]    [Pg.34]    [Pg.29]    [Pg.238]    [Pg.281]    [Pg.283]    [Pg.301]    [Pg.126]    [Pg.55]    [Pg.132]    [Pg.365]    [Pg.277]    [Pg.33]    [Pg.160]    [Pg.113]    [Pg.8]   
See also in sourсe #XX -- [ Pg.1118 ]




SEARCH



Liquid drops

Sessile

Sessile drop

© 2024 chempedia.info