Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Laplace flow

The Young-Laplace equation forms the basis for some important methods for measuring surface and interfacial tensions, such as the pendant and sessile drop methods, the spinning drop method, and the maximum bubble pressure method (see Section 3.2.3). Liquid flow in response to the pressure difference expressed by Eqs. (3.6) or (3.7) is known as Laplace flow, or capillary flow. [Pg.61]

Equation (A3.3.73) is referred to as the Gibbs-Thomson boundary condition, equation (A3.3.74) detemiines p on the interfaces in temis of the curvature, and between the interfaces p satisfies Laplace s equation, equation (A3.3.71). Now, since ] = -Vp, an mterface moves due to the imbalance between the current flowing into and out of it. The interface velocity is therefore given by... [Pg.748]

Equation 9 is Laplace s equation which also occurs in several other fields of mathematical physics. Where the flow problem is two-dimensional, the velocities ate also detivable from a stream function, /. [Pg.89]

The emulsification process in principle consists of the break-up of large droplets into smaller ones due to shear forces (10). The simplest form of shear is experienced in lamellar flow, and the droplet break-up may be visualized according to Figure 4. The phenomenon is governed by two forces, ie, the Laplace pressure, which preserves the droplet, and the stress from the velocity gradient, which causes the deformation. The ratio between the two is called the Weber number. We, where Tj is the viscosity of the continuous phase, G the velocity gradient, r the droplet radius, and y the interfacial tension. [Pg.197]

For isotropic homogeneous porous media (uniform permeability and porosity), the pressure for creeping incompressible single phase-flow may be shown to satisfy the LaPlace equation ... [Pg.665]

This is the equation for a plug flow reactor. It can be derived directly from the rate equations with the aid of Laplace transforms. The sequences of second-order reactions of Figs. 7-5n and 7-5c required numerical integrations. [Pg.697]

In the simplest case of one-dimensional steady flow in the x direction, there is a parallel between Eourier s law for heat flowrate and Ohm s law for charge flowrate (i.e., electrical current). Eor three-dimensional steady-state, potential and temperature distributions are both governed by Laplace s equation. The right-hand terms in Poisson s equation are (.Qy/e) = (volumetric charge density/permittivity) and (Qp // ) = (volumetric heat generation rate/thermal conductivity). The respective units of these terms are (V m ) and (K m ). Representations of isopotential and isothermal surfaces are known respectively as potential or temperature fields. Lines of constant potential gradient ( electric field lines ) normal to isopotential surfaces are similar to lines of constant temperature gradient ( lines of flow ) normal to... [Pg.2]

Fig. 4.1 Block diagram of a closed-loop control system. R s) = Laplace transform of reference input r(t) C(s) = Laplace transform of controlled output c(t) B s) = Primary feedback signal, of value H(s)C(s) E s) = Actuating or error signal, of value R s) - B s), G s) = Product of all transfer functions along the forward path H s) = Product of all transfer functions along the feedback path G s)H s) = Open-loop transfer function = summing point symbol, used to denote algebraic summation = Signal take-off point Direction of information flow. Fig. 4.1 Block diagram of a closed-loop control system. R s) = Laplace transform of reference input r(t) C(s) = Laplace transform of controlled output c(t) B s) = Primary feedback signal, of value H(s)C(s) E s) = Actuating or error signal, of value R s) - B s), G s) = Product of all transfer functions along the forward path H s) = Product of all transfer functions along the feedback path G s)H s) = Open-loop transfer function = summing point symbol, used to denote algebraic summation = Signal take-off point Direction of information flow.
Superposition of Flows Potential flow solutions are also useful to illustrate the effect of cross-drafts on the efficiency of local exhaust hoods. In this way, an idealized uniform velocity field is superpositioned on the flow field of the exhaust opening. This is possible because Laplace s equation is a linear homogeneous differential equation. If a flow field is known to be the sum of two separate flow fields, one can combine the harmonic functions for each to describe the combined flow field. Therefore, if d)) and are each solutions to Laplace s equation, A2, where A and B are constants, is also a solution. For a two-dimensional or axisymmetric three-dimensional flow, the flow field can also be expressed in terms of the stream function. [Pg.840]

Outside the jet and away from the boundaries of the workbench the flow will behave as if it is inviscid and hence potential flow is appropriate. Further, in the central region of the workbench we expect the airflow to be approximately two-dimensional, which has been confirmed by the above experimental investigations. In practice it is expected that the worker will be releasing contaminant in this region and hence the assumption of two-dimensional flow" appears to be sound. Under these assumptions the nondimensional stream function F satisfies Laplace s equation, i.e.. [Pg.962]

In the case of the free jet, the solution for the Aaberg exhaust system can be found by solving the Laplace equation by the method of separation of variables and assuming that there is no fluid flow through the surface of the workbench. At the edge of the jet, which is assumed to be at 0—0, the stream function is given by Eq. (10.113). This gives rise to... [Pg.963]

Let us start with a model situation there is a single bubble in the liquid, the gas is insoluble, and there is no flow. Internal pressure Pint in the equilibrium bubble is in this case counterbalanced by external pressure Pext and surface Laplace pressure PL = 2a/r (a is surface tension) ... [Pg.106]

This partial differential equation is most conveniently solved by the use of the Laplace transform of temperature with respect to time. As an illustration of the method of solution, the problem of the unidirectional flow of heat in a continuous medium will be considered. The basic differential equation for the X-direction is ... [Pg.395]

The first approach developed by Hsu (1962) is widely used to determine ONE in conventional size channels and in micro-channels (Sato and Matsumura 1964 Davis and Anderson 1966 Celata et al. 1997 Qu and Mudawar 2002 Ghiaasiaan and Chedester 2002 Li and Cheng 2004 Liu et al. 2005). These models consider the behavior of a single bubble by solving the one-dimensional heat conduction equation with constant wall temperature as a boundary condition. The temperature distribution inside the surrounding liquid is the same as in the undisturbed near-wall flow, and the temperature of the embryo tip corresponds to the saturation temperature in the bubble 7s,b- The vapor temperature in the bubble can be determined from the Young-Laplace equation and the Clausius-Clapeyron equation (assuming a spherical bubble) ... [Pg.260]

Laplace s pressure produces the capillary rise inside a small tube. We propose to examine now the consequences of the solid deformation in capillary flow. [Pg.310]

Fig. 39.14. (a) Catenary compartmental model representing a reservoir (r), absorption (a) and plasma (p) compartments and the elimination (e) pool. The contents X, Xa, Xp and X,. are functions of time t. (b) The same catenary model is represented in the form of a flow diagram using the Laplace transforms Xr, Xa and Xp in the j-domain. The nodes of the flow diagram represent the compartments, the boxes contain the transfer functions between compartments [1 ]. (c) Flow diagram of the lumped system consisting of the reservoir (r), and the absorption (a) and plasma (p) compartments. The lumped transfer function is the product of all the transfer functions in the individual links. [Pg.487]

Consider the stirred-tank heater again, this time in a closed-loop (Fig. 5.4). The tank temperature can be affected by variables such as the inlet and jacket temperatures and inlet flow rate. Back in Chapter 2, we derived the transfer functions for the inlet and jacket temperatures. In Laplace transform, the change in temperature is given in Eq. (2-49b) on page 2-25 as... [Pg.88]

The Laplace equation also applies to the distribution of electrical potential and current flow in an electrically conducting medium as well as the temperature distribution and heat flow in a thermally conducting medium. For example, if => E, V => i, and fi/K => re, where re is the electrical resistivity (re = RA/Ax), Eq. (13-22) becomes Ohm s law ... [Pg.398]

The combination of Eqs. (28) and (22) gives the Laplace transform of the impulse response H(p) which allows us to solve Eq. (21). By the inverse transformation, the relation which gives the output of the linear system g(t) (the thermogram) to any input/(0 (the thermal phenomenon under investigation) is obtained. This general equation for the heat transfer in a heat-flow calorimeter may be written (40, 46) ... [Pg.213]

The sensoric principle of the dynamic bubble-pressure tensiometer is based on the differential Laplace pressure between two capillaries from which a controlled gas flow is released. At the lower end of a capillary which points into the liquid, a gas bubble is formed which increases its radius with increasing gas pressure (see... [Pg.102]

For potential flow, ie incompressible, irrotational flow, the velocity field can be found by solving Laplace s equation for the velocity potential then differentiating the potential to find the velocity components. Use of Bernoulli s equation then allows the pressure distribution to be determined. It should be noted that the no-slip boundary condition cannot be imposed for potential flow. [Pg.331]


See other pages where Laplace flow is mentioned: [Pg.505]    [Pg.745]    [Pg.590]    [Pg.505]    [Pg.745]    [Pg.590]    [Pg.91]    [Pg.428]    [Pg.721]    [Pg.214]    [Pg.964]    [Pg.114]    [Pg.380]    [Pg.20]    [Pg.48]    [Pg.103]    [Pg.357]    [Pg.187]    [Pg.204]    [Pg.485]    [Pg.24]    [Pg.387]    [Pg.397]    [Pg.331]   
See also in sourсe #XX -- [ Pg.61 ]

See also in sourсe #XX -- [ Pg.493 ]




SEARCH



Laplace

© 2024 chempedia.info