Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquid phase drying

Fusion and vaporization are the most familiar phase changes, but sublimation is also common. Sublimation is a phase change in which a solid converts directly to a vapor without passing through the liquid phase. Dry ice (solid CO2) sublimes at 195 K with A ii/subl — 25.2 kJ/mol. Mothballs contain naphthalene (Cio Hg,... [Pg.804]

Both wet and dry extrusion techniques are available, and both are strongly influenced by the friclional properties of the particulate phase and wall. In the case of wet extrusion, rheological properties of the liquid phase are equally important. See Pietsch [Size Enlargement by Agglomeration, John Wiley Sons Ltd., Chichester, 346 (1992)] and Benbow et al. [Chem. Eng. Sci., 422,2151 (1987)] for a review of design procedures for dry and wet extrusion, respectively. [Pg.1902]

In suspension processes the fate of the continuous liquid phase and the associated control of the stabilisation and destabilisation of the system are the most important considerations. Many polymers occur in latex form, i.e. as polymer particles of diameter of the order of 1 p.m suspended in a liquid, usually aqueous, medium. Such latices are widely used to produce latex foams, elastic thread, dipped latex rubber goods, emulsion paints and paper additives. In the manufacture and use of such products it is important that premature destabilisation of the latex does not occur but that such destabilisation occurs in a controlled and appropriate manner at the relevant stage in processing. Such control of stability is based on the general precepts of colloid science. As with products from solvent processes diffusion distances for the liquid phase must be kept short furthermore, care has to be taken that the drying rates are not such that a skin of very low permeability is formed whilst there remains undesirable liquid in the mass of the polymer. For most applications it is desirable that destabilisation leads to a coherent film (or spongy mass in the case of foams) of polymers. To achieve this the of the latex compound should not be above ambient temperature so that at such temperatures intermolecular diffusion of the polymer molecules can occur. [Pg.181]

Propeller mixers are used for mixing liquids with viscosities up to 2,000 cp. They are suitable for the formation of low-viscosity emulsions, for dissolving applications and for liquid-phase chemical reactions. For suspensions, the upper limit of particle size is 0.1 to 0.5 mm, with a maximum dry residue of 10%. [Pg.437]

The removal of solid particles from gas/vapor or liquid streams can be accomplished by several techniques, some handling the flow dry, others wetting the stream to settle/agglomerate the solids (or even dissolve) and remove the liquid phase from the system with the solid particles. Some techniques are more adaptable to certain industries than others. Figure 4-54 illustrates typical ranges of particle size removal of various types of common equipment or technique. All of these will not be covered in this chapter. Attention will be directed to the usual equipment associated with the chemical/petrochemical industries. [Pg.266]

Initially fermentation broth has to be characterised on the viscosity of the fluid. If the presence of the biomass or cells causes trouble, they have to be removed. Tire product is stored inside the cells, the cells must be ruptured and the product must be freed. Intracellular protein can easily be precipitated, settled or filtered. In fact the product in diluted broth may not be economical enough for efficient recovery. Enrichment of the product from the bioreactor effluents for increasing product concentration may reduce the cost of product recovery. There are several economical methods for pure product recovery, such as crystallisation of the product from the concentrated broth or liquid phase. Even small amounts of cellular proteins can be lyophilised or dried from crude solution of biological products such as hormone or enzymes.2,3... [Pg.170]

Dr. Blum As a further comment on pressure optimization, and as it relates to our system, I think the response of the slurry methanation system to pressure is somewhat different from that of dry methanation. It relates to the ability of the catalyst to methanate a given amount of gas. In our system, the effective pressure is the total pressure minus the vapor pressure of the liquid phase. This doesn t hold for the standard methanation catalyst in the dry system. There is a different pressure relationship so the optimum just might not work quite the same way. [Pg.179]

In air-water flow the different flow patterns occur simultaneously in different micro-channels. Although the gas core may occupy almost the entire cross-section of the triangular channel, making the side walls partially dry, the liquid phase always remained continuous due to the fact that the liquid was drawn into the triangular corners by surface tension. [Pg.214]

Tewa-Tagne, P., Briangon, S. Fessi, H. (2006). Spray-dried microparticles containing polymeric nanocapsules Formulation aspects, liquid phase interactions and particles characteristics. International Journal of Pharmaceutics, Vol. 325, 1-2, (November 2006), pp. (63-74), ISSN 0378-5173... [Pg.83]

Wet towels hung on a clothesline eventually dry, because the continual motion of molecules in liquid water allows some molecules to escape from the liquid phase (Figure 2-9aV A wet towel left in a closed washing machine, however, stays wet for a long time. This is because water molecules that escape from the surface of the towel remain within the washing chamber (Figure 2-9b). The number of water molecules in the gas phase increases, and the towel recaptures some of these molecules when they collide with its surface. The system soon reaches a condition of dynamic equilibrium in which, for every water molecule that leaves the surface of the towel, one water molecule returns from the gas phase to the towel (Figure 2-9cV Under these conditions, the towel remains wet indefinitely. [Pg.74]

C02-0034. Carbon dioxide can exist as a liquid, solid (dry ice), or gas. Each carbon dioxide molecule is linear, with a carbon atom in the middle and an oxygen atom on either side. Draw molecular pictures that represent carbon dioxide in each phase. [Pg.109]

CFP are normally quite resistant to thermal degradation, under dinitrogen, and depolymerisation starts in the 280-320 °C range, in the dry state [21]. This makes M°/ CFPs quite suitable for operations in the liquid phase occurring at mild to moderate temperatures. CFPs... [Pg.206]

Hydrate formation can be prevented by drying a gas to such an extent that no condensate can be formed. This method is the preferable one, but inhibition of hydrate formation from the liquid phase can be achieved. [Pg.181]

After that, in the same cell the movable ZnO film (in situ) was immersed for some time in liquid acetone. Then, the film was taken out of the liquid and dried. Radicals were adsorbed from a gas phase, other conditions being the same. In the second experiment, we obtained the values of variation of electric conductivity of the ZnO film, caused by adsorption of alkyl radicals, close to those obtained in the first experiment. [Pg.266]


See other pages where Liquid phase drying is mentioned: [Pg.201]    [Pg.202]    [Pg.203]    [Pg.205]    [Pg.207]    [Pg.209]    [Pg.211]    [Pg.213]    [Pg.215]    [Pg.217]    [Pg.220]    [Pg.20]    [Pg.50]    [Pg.9]    [Pg.15]    [Pg.201]    [Pg.202]    [Pg.203]    [Pg.205]    [Pg.207]    [Pg.209]    [Pg.211]    [Pg.213]    [Pg.215]    [Pg.217]    [Pg.220]    [Pg.20]    [Pg.50]    [Pg.9]    [Pg.15]    [Pg.1319]    [Pg.1322]    [Pg.1755]    [Pg.29]    [Pg.203]    [Pg.446]    [Pg.331]    [Pg.14]    [Pg.69]    [Pg.227]    [Pg.214]    [Pg.25]    [Pg.234]    [Pg.65]    [Pg.562]    [Pg.102]    [Pg.27]    [Pg.297]    [Pg.84]    [Pg.235]    [Pg.346]   
See also in sourсe #XX -- [ Pg.201 , Pg.202 , Pg.203 , Pg.204 , Pg.205 , Pg.206 , Pg.207 , Pg.208 , Pg.209 , Pg.210 , Pg.211 , Pg.212 , Pg.213 , Pg.214 , Pg.215 , Pg.216 , Pg.217 , Pg.218 ]




SEARCH



Liquid drying

© 2024 chempedia.info