Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquid junctions, types

Figure 1 depicts the electric displacement eE [where E is the field and e the dielectric constant] across the vesicle membrane of thickness 6 on the assumption that the media of both sides have equal ionic strengths. The resting potential difference across the membrane, is of the liquid-junction type but is usually close to a Nernst potential. The Debye lengths in both the ionic media are X. Inside the membrane E = / the constant Planck field. Outside the membrane, the field is assumed to decline in accord with a linear Goiiy-Chapman model, E = Epe, so that Fy = + 2A). If we define... [Pg.624]

Electrodeposited surfactant AlPc (41) film also formed solid liquid-junction type cells with redox systems Fe(CN) , benzoquinone/hydroquinone, I3 /I, ... [Pg.203]

In fact, some care is needed with regard to this type of concentration cell, since the assumption implicit in the derivation of A2.4.126 that the potential in the solution is constant between the two electrodes, caimot be entirely correct. At the phase boundary between the two solutions, which is here a semi-pemieable membrane pemiitting the passage of water molecules but not ions between the two solutions, there will be a potential jump. This so-called liquid-junction potential will increase or decrease the measured EMF of the cell depending on its sign. Potential jumps at liquid-liquid junctions are in general rather small compared to nomial cell voltages, and can be minimized fiirther by suitable experimental modifications to the cell. [Pg.602]

However, in the case of stress-corrosion cracking of mild steel in some solutions, the potential band within which cracking occurs can be very narrow and an accurately known reference potential is required. A reference half cell of the calomel or mercury/mercurous sulphate type is therefore used with a liquid/liquid junction to separate the half-cell support electrolyte from the process fluid. The connections from the plant equipment and reference electrode are made to an impedance converter which ensures that only tiny currents flow in the circuit, thus causing the minimum polarisation of the reference electrode. The signal is then amplifled and displayed on a digital voltmeter or recorder. [Pg.33]

Benniston AC, Haniman A (2008) Artificial photosynthesis. Materials Today 11 26-34 Inoue T, Fujishima A, Konishi S, Honda K (1979) Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277 637-638 Halmann M (1978) Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature 275 115-116 Heminger JC, Carr R, Somorjai GA (1987) The photoassisted reaction of gaseous water and carbon dioxide adsorbed on the SrH03 (111) crystal face to form methane. Chem Phys Lett 57 100-104... [Pg.303]

Similar photovoltaic cells as those described above can be made with semiconductor/ liquid Junctions. The basic function of such a cell is illustrated in terms of an energy scheme in Fig. 2. The system consists of an n-type semiconductor and an inert metal... [Pg.84]

Practically all liquid cells with reversible interfacial equilibria examined can be considered as liquid galvanic cells of the Nernst, Haber, or intermediate type [3]. Usually, a dashed vertical bar ( ) is used to represent the junction between liquids. A double dashed vertical bar ( ) represents a liquid junction in which the diffusion potential has been assumed to be eliminated. [Pg.26]

Under potentiostatic conditions, the photocurrent dynamics is not only determined by faradaic elements, but also by double layer relaxation. A simplified equivalent circuit for the liquid-liquid junction under illumination at a constant DC potential is shown in Fig. 18. The difference between this case and the one shown in Fig. 7 arises from the type of perturbation introduced to the interface. For impedance measurements, a modulated potential is superimposed on the DC polarization, which induces periodic responses in connection with the ET reaction as well as transfer of the supporting electrolyte. In principle, periodic light intensity perturbations at constant potential do not affect the transfer behavior of the supporting electrolyte, therefore this element does not contribute to the frequency-dependent photocurrent. As further clarified later, the photoinduced ET... [Pg.220]

The foregoing text highlights the fact that at the interface between electrolytic solutions of different concentrations (or between two different electrolytes at the same concentration) there originates a liquid junction potential (also known as diffusion potential). The reason for this potential lies in the fact that the rates of diffusion of ions are a function of their type and of their concentration. For example, in the case of a junction between two concentrations of a binary electrolyte (e.g., NaOH, HC1), the two different types of ion diffuse at different rates from the stronger to the weaker solution. Hence, there arises an excess of ions of one type, and a deficit of ions of the other type on opposite sides of the liquid junction. The resultant uneven distribution of electric charges constitutes a potential difference between the two solutions, and this acts in such a way as to retard the faster ion and to accelerate the slower. In this way an equilibrium is soon reached, and a steady potential difference is set up across the boundary between the solutions. Once the steady potential difference is attained, no further net charge transfer occurs across the liquid junction and the different types of ion diffuse at the same rate. [Pg.629]

Present attention is first focused on the electrolyte concentration cells without liquid junctions. Such cells can be explained with two cells of the type... [Pg.661]

Two types of methods are used to measure activity coefficients. Potentiometric methods that measure the mean activity coefficient of the dissolved electrolyte directly will be described in Section 3.3.3. However, in galvanic cells with liquid junctions the electrodes respond to individual ion activities (Section 3.2). This is particularly true for pH measurement (Sections 3.3.2 and 6.3). In these cases, extrathermodynamical procedures defining individual ion activities must be employed. [Pg.55]

So far, a cell containing a single electrolyte solution has been considered (a galvanic cell without transport). When the two electrodes of the cell are immersed into different electrolyte solutions in the same solvent, separated by a liquid junction (see Section 2.5.3), this system is termed a galvanic cell with transport. The relationship for the EMF of this type of a cell is based on a balance of the Galvani potential differences. This approach yields a result similar to that obtained in the calculation of the EMF of a cell without transport, plus the liquid junction potential value A0L. Thus Eq. (3.1.66) assumes the form... [Pg.178]

It would appear from Eq. (3.2.8) that the pH, i.e. the activity of a single type of ion, can be measured exactly. This is not, in reality, true even if the liquid junction potential is eliminated the value of Eref must be known. This value is always determined by assuming that the activity coefficients depend only on the overall ionic strength and not on the ionic species. Thus the mean activities and mean activity coefficients of the electrolyte must be employed. The use of this assumption in the determination of the value of Eref will, of course, also affect the pH value found from Eq. (3.2.8). Thus, the potentiometric determination of the pH is more difficult than would appear at first glance and will be considered in the special Section 3.3.2. [Pg.184]

For practical measurements, six further solutions were measured as primary standards and fifteen additional solutions as operational standards (the difference between these two types of standards lies in the presence or absence of a liquid junction they need not be distinguished for routine measurements). [Pg.205]

M. Halmann. Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature. 1978, 275(5676) 115-116. [Pg.113]

Fig. 2.2. Various types of liquid junction with restrained diffusion ... Fig. 2.2. Various types of liquid junction with restrained diffusion ...
In the presence of colloidal solutions in contact with a liquid junction, anomalous liquid-junction potentials are often measured. This suspension or Palmarm effect [14] has not yet been satisfactorily explained. It is probably a Donnan-type potential with the electrically-charged colloidal species acting as indiffusible ions (cf. section 5.1.3). [Pg.31]

Figure 4.20.A shows a more recent cell reported by Cobben et al. It consists of three Perspex blocks, of which two (A) are identical and the third (B) different. Part A is a Perspex block (1) furnished with two pairs of resilient hooks (3) for electrical contact. With the aid of a spring, the hooks press at the surface of the sensor contact pads (4), the back side of which rests on the Perspex siuface, so the sensor gate is positioned in the centre of the block, which is marked by an engraved cross as in the above-described wall-jet cell. Part B is a prismatic Perspex block (2) (85 x 24 x 10 mm ) into which a Z-shaped flow channel of 0.5 mm diameter is drilled. Each of the wedges of the Z reaches the outside of the block. The Z-shaped flow-cell thus built has a zero dead volume. As a result, the solution volume held between the two CHEMFETs is very small (3 pL). The cell is sealed by gently pushing block A to B with a lever. The inherent plasticity of the PVC membrane ensures water-tight closure of the cell. The closeness between the two electrodes enables differential measurements with no interference from the liquid junction potential. The differential signal provided by a potassium-selective and a sodium-selective CHEMFET exhibits a Nemstian behaviour and is selective towards potassium in the presence of a (fixed) excess concentration of sodium. The combined use of a highly lead-selective CHEMFET and a potassium-selective CHEMFET in this type of cell also provides excellent results. Figure 4.20.A shows a more recent cell reported by Cobben et al. It consists of three Perspex blocks, of which two (A) are identical and the third (B) different. Part A is a Perspex block (1) furnished with two pairs of resilient hooks (3) for electrical contact. With the aid of a spring, the hooks press at the surface of the sensor contact pads (4), the back side of which rests on the Perspex siuface, so the sensor gate is positioned in the centre of the block, which is marked by an engraved cross as in the above-described wall-jet cell. Part B is a prismatic Perspex block (2) (85 x 24 x 10 mm ) into which a Z-shaped flow channel of 0.5 mm diameter is drilled. Each of the wedges of the Z reaches the outside of the block. The Z-shaped flow-cell thus built has a zero dead volume. As a result, the solution volume held between the two CHEMFETs is very small (3 pL). The cell is sealed by gently pushing block A to B with a lever. The inherent plasticity of the PVC membrane ensures water-tight closure of the cell. The closeness between the two electrodes enables differential measurements with no interference from the liquid junction potential. The differential signal provided by a potassium-selective and a sodium-selective CHEMFET exhibits a Nemstian behaviour and is selective towards potassium in the presence of a (fixed) excess concentration of sodium. The combined use of a highly lead-selective CHEMFET and a potassium-selective CHEMFET in this type of cell also provides excellent results.
The more general problem of the magnitude of the liquid junction existing between the following types of ionic solutions... [Pg.242]

Similar photovoltaic cells can be made of semiconductor/liquid junctions. For example, the system could consist of an n-type semiconductor and an inert metal counterelectrode, in contact with an electrolyte solution containing a suitable reversible redox couple. At equilibrium, the electrochemical potential of the redox system in solution is aligned with the Fermi level of the semiconductor. Upon light excitation, the generated holes move toward the Si surface and are consumed for the oxidation of the red species. The charge transfer at the Si/electrolyte interface should account for the width of occupied states in the semiconductor and the range of the energy states in the redox system as represented in Fig. 1. [Pg.330]

Figure 7.7 Schematic representation of a liquid-junction photovoltaic cell using an n-type semiconductor. R/O is the redox couple in the electrolyte. Figure 7.7 Schematic representation of a liquid-junction photovoltaic cell using an n-type semiconductor. R/O is the redox couple in the electrolyte.
In summary, at nanostructured tin-oxide semiconductor-aqueous solution interfaces, back ET to molecular dyes is well described by conventional Marcus-type electron-transfer theory. The mechanistic details of the reaction, however, are remarkably sensitive to the nature of the semiconductor-dye binding interactions. The mechanistic differences point, potentially, to differing design strategies for kinetic optimization of the corresponding liquid-junction solar cells. [Pg.118]


See other pages where Liquid junctions, types is mentioned: [Pg.400]    [Pg.55]    [Pg.400]    [Pg.55]    [Pg.476]    [Pg.85]    [Pg.215]    [Pg.225]    [Pg.247]    [Pg.254]    [Pg.262]    [Pg.682]    [Pg.60]    [Pg.232]    [Pg.233]    [Pg.65]    [Pg.629]    [Pg.479]    [Pg.480]    [Pg.491]    [Pg.17]    [Pg.171]    [Pg.305]    [Pg.7]    [Pg.30]    [Pg.85]    [Pg.331]    [Pg.419]    [Pg.233]   
See also in sourсe #XX -- [ Pg.212 , Pg.213 , Pg.214 , Pg.215 ]




SEARCH



Liquid types

© 2024 chempedia.info