Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquid crystal materials amphiphiles

Order and Mobility are two basic principles of mother nature. The two extremes are realized in the perfect order of crystals with their lack of mobility and in the high mobility of liquids and their lack of order. Both properties are combined in liquid crystalline phases based on the selforganization of formanisotropic molecules. Their importance became more and more visible during the last years in Material science they are a basis of new materials, in Life science they are important for many structure associated functions of biological systems. The main contribution of Polymer science to thermotropic and lyotropic liquid crystals as well as to biomembrane models consists in the fact that macromolecules can stabilize organized systems and at the same time retain mobility. The synthesis, structure, properties and phototunctionalization of polymeric amphiphiles in monolayers and multilayers will be discussed. [Pg.70]

Polymerization of LB films, or deposition of LB films on polymers, offers the opportunity to impart to LB films a higher degree of mechanical integrity. However, preliminary work in this direction shows a conflict between the chainlike primary structure of the polymer and the well-organized supramo-lecular structure [15]. One possible solution may be the insertion of flexible spacers between the main chain polymer and the side chain amphiphile, a route also employed in liquid crystal polymers. These materials belong to an interesting class of two-dimensional polymers, of which there are few examples. These toughening techniques may eventually be applied to stabilize other self-assembled microstructures, such as vesicles, membranes, and microemulsions. [Pg.329]

The unusual optical properties of liquid crystals had been remarked upon and described for several centuries before their uniqueness as a state of matter was recognised. Their early reports described the strange melting behaviour and appearance of some naturally occurring materials, either as pure compounds or as gels in water, which have now been shown to be thermotropic or lyotropic liquid crystals. Thermotropic liquid crystalline phases are formed under the action of heat, see Figures 2.1 and 2.2, and the lyotropic liquid crystalline phases are formed by the action of a solvent, such as water, usually with an amphiphilic compound. However, the nature of these materials, or indeed their exact... [Pg.10]

Extension of the molecular sieves to the mesoporosity range is possible nsing lyotropic liquid crystal mesophases (Figine 25.20) as removable templates. These mesophases result from the self-assembly of surfactants or amphiphilic molecules and can be thermally or chemically eliminated after the formation of the inorganic network. This approach enables the preparation of materials exhibiting an ordered... [Pg.468]

Fig. 7.11. Schematic representation of a silica membrane material exhibiting an ordered porous texture. Template effect obtained from self-assembled amphiphilic systems, (a) Wet gel ccmfeiining a hexagonal liquid crystal phase and the corresponding X ray diagram. G ) Heat-treated gel with residual ordered porosity and the corresponding X-ray diagram [68]. Fig. 7.11. Schematic representation of a silica membrane material exhibiting an ordered porous texture. Template effect obtained from self-assembled amphiphilic systems, (a) Wet gel ccmfeiining a hexagonal liquid crystal phase and the corresponding X ray diagram. G ) Heat-treated gel with residual ordered porosity and the corresponding X-ray diagram [68].
As their name implies, liquid crystals are materials whose structures and properties are intermediate between those of isotropic liquids and crystalline solids (2). They can be of two primary types. Thermotropic liquid crystalline phases are formed at temperatures intermediate between those at which the crystalline and isotropic liquid phases of a mesogenic compound exist. Substances which exhibit thermotropic phases are generally rod- or disc-like in shape, and contain flexible substituents attached to a relatively rigid molecular core. Lyotropic liquid crystalline phases are formed by amphiphilic molecules (e.g. surfactants) in the presence of small amounts of water or other polar solvent. In general, the constituent molecules in a liquid crystal possess orientational order reminiscent of that found in the crystalline phase, yet retain some degree of the fluidity associated with the isotropic liquid phase. [Pg.481]

Thermotropic liquid crystals and also lyotropic liquid crystals generate functional molecular assemblies. lyotropic liquid crystalline phases are exhibited by amphiphilic molecules in appropriate solvents. They form nano-segregated structures because the molecular structures consist of hydrophilic and hydrophobic components. In Chapter 6, Gin and co-workers describe how lyotropic liquid crystals may be used to form functional materials. Lyotropic liquid crystals can act as templates for inorganic materials, ion conductors, catalysts, drug delivery systems, and nanofilters. [Pg.245]

Liquid crystals combine properties of both liquids (fluidity) and crystals (long range order in one, two, or three dimensions). Examples of liquid crystalline templates formed by amphiphiles are lyotropic mesophases, block copolymer mesophases, and polyelectrolyte-suxfactant complexes. Their morphological complexity enables the template synthesis of particles as well as of bulk materials with isotropic or anisotropic morphologies, depending on whether the polymerization is performed in a continuous or a discontinuous phase. As the templating of thermotropic liquid crystals is already described in other reviews [47] the focus here is the template synthesis of organic materials in lyotropic mesophases. [Pg.213]

Lyotropic liquid crystals are principally systems that are made up of amphiphiles and suitable solvents or liquids. In essence an amphiphilic molecule has a dichotomous structure which has two halves that have vastly different physical properties, in particular their ability to mix with various liquids. For example, a dichotomous material may be made up of a fluorinated part and a hydrocarbon part. In a fluorinated solvent environment the fluorinated part of the material will mix with the solvent whereas the hydrocarbon part will be rejected. This leads to microphase separation of the two systems, i.e., the hydrocarbon parts of the amphiphile stick together and the fluorinated parts and the fluorinated liquid stick together. The reverse is the case when mixing with a hydrocarbon solvent. When such systems have no bend or splay curvature, i.e., they have zero curvature, lamellar sheets can be formed. In the case of hydrocarbon/fluorocarbon systems, a mesophase is formed where there are sheets of fluorocarbon species separated from other such sheets by sheets of hydrocarbon. This phase is called the La phase. In the La phase the molecules are orientationally ordered but positionally disordered, and as a consequence the amphiphiles are arranged perpendicular to the lamellae. The La phase of lyotropics is therefore equivalent to the smectic A phase of thermotropic liquid crystals. [Pg.144]


See other pages where Liquid crystal materials amphiphiles is mentioned: [Pg.58]    [Pg.331]    [Pg.233]    [Pg.336]    [Pg.386]    [Pg.221]    [Pg.2395]    [Pg.533]    [Pg.135]    [Pg.284]    [Pg.68]    [Pg.387]    [Pg.388]    [Pg.416]    [Pg.533]    [Pg.237]    [Pg.44]    [Pg.95]    [Pg.881]    [Pg.892]    [Pg.79]    [Pg.120]    [Pg.121]    [Pg.11]    [Pg.40]    [Pg.45]    [Pg.202]    [Pg.139]    [Pg.9]    [Pg.357]    [Pg.538]    [Pg.292]    [Pg.135]    [Pg.182]    [Pg.850]    [Pg.862]    [Pg.37]    [Pg.451]    [Pg.1]    [Pg.185]    [Pg.524]   
See also in sourсe #XX -- [ Pg.22 ]




SEARCH



Crystal Materials

Liquid materials

© 2024 chempedia.info