Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquid crystal growth

Spherulites showing concentric layers present a disclination radius or diameter, but this structure is due to a topological constraint and does not seem to be linked to liquid crystal growth. Very rapid growth of cholesteric phases often generates screw dislocations of the two types shown in Fig. 24i and j, and this has been filmed by Rault in p-azoxyanisol added to cholesterol benzoate [98, 99]. Slow growth does not result in the production of these defects. [Pg.477]

Crystal growth is a diffusion and integration process, modified by the effect of the solid surfaces on which it occurs (Figure 5.3). Solute molecules/ions reach the growing faces of a crystal by diffusion through the liquid phase. At the surface, they must become organized into the space lattice through an... [Pg.125]

Here r is the distance between the centers of two atoms in dimensionless units r = R/a, where R is the actual distance and a defines the effective range of the potential. Uq sets the energy scale of the pair-interaction. A number of crystal growth processes have been investigated by this type of potential, for example [28-31]. An alternative way of calculating solid-liquid interface structures on an atomic level is via classical density-functional methods [32,33]. [Pg.858]

In this section we briefly summarize a few modern applications of simulation techniques for the understanding of crystal growth of more complex materials. In principle, liquid crystals and colloids also belong to this class, but since the relative length of their basic elements in units of their diameter is still of order about unity in contrast to polymers, for example, they can be described rather well by the more conventional models and methods as discussed above. [Pg.904]

R. Gonzalez-Cinca, L. Ramirez-Piscina, J. Casademunt, A. Hernandez-Machado, L. Kramer, T. Toth Katona, T. Borzsonyi, A. Buka. Phase field simulations and experiments of faceted growth in liquid crystals. Physica D 99 159, 1996. [Pg.919]

Monomers of die type Aa B. are used in step-growth polymerization to produce a variety of polymer architectures, including stars, dendrimers, and hyperbranched polymers.26 28 The unique architecture imparts properties distinctly different from linear polymers of similar compositions. These materials are finding applications in areas such as resin modification, micelles and encapsulation, liquid crystals, pharmaceuticals, catalysis, electroluminescent devices, and analytical chemistry. [Pg.8]

Linear polyurethanes, 26 Linear step-growth polymerizations, 13 Lipase-catalyzed polyesterifications, 83 Lipases, 82, 84 catalytic site of, 84 Liquefied MDIs, 211, 226-227 Liquid carbon dioxide, 206 Liquid-castable systems, 201 Liquid crystal devices (LCDs), alignment coating for, 269-270 Liquid crystalline aromatic polyesters, 35 Liquid crystalline polyesters, 25, 26, 48-53... [Pg.587]

The data presented in Figure 8 graphically illustrate the tremendous and rapid growth in interest in FOSS chemistry, especially for patented applications. This looks set to continue with current applications in areas as diverse as dendrimers, composite materials, polymers, optical materials, liquid crystal materials, atom scavengers, and cosmetics, and, no doubt, many new areas to come. These many applications derive from the symmetrical nature of the FOSS cores which comprise relatively rigid, near-tetrahedral vertices connected by more flexible siloxane bonds. The compounds are usually thermally and chemically stable and can be modified by conventional synthetic methods and are amenable to the usual characterization techniques. The recent commercial availability of a wide range of simple monomers on a multigram scale will help to advance research in the area more rapidly. [Pg.104]

Crystal Growth of Borides e.7.4.2. Liquid-Phase Methods 6.7.4.2.1. Crystal Pulling. [Pg.284]

The rapid rise in computer speed over recent years has led to atom-based simulations of liquid crystals becoming an important new area of research. Molecular mechanics and Monte Carlo studies of isolated liquid crystal molecules are now routine. However, care must be taken to model properly the influence of a nematic mean field if information about molecular structure in a mesophase is required. The current state-of-the-art consists of studies of (in the order of) 100 molecules in the bulk, in contact with a surface, or in a bilayer in contact with a solvent. Current simulation times can extend to around 10 ns and are sufficient to observe the growth of mesophases from an isotropic liquid. The results from a number of studies look very promising, and a wealth of structural and dynamic data now exists for bulk phases, monolayers and bilayers. Continued development of force fields for liquid crystals will be particularly important in the next few years, and particular emphasis must be placed on the development of all-atom force fields that are able to reproduce liquid phase densities for small molecules. Without these it will be difficult to obtain accurate phase transition temperatures. It will also be necessary to extend atomistic models to several thousand molecules to remove major system size effects which are present in all current work. This will be greatly facilitated by modern parallel simulation methods that allow molecular dynamics simulations to be carried out in parallel on multi-processor systems [115]. [Pg.61]

In the first step, lipid model membranes have been generated (Fig. 15) on the air/liquid interface, on a glass micropipette (see Section VIII.A.1), and on an aperture that separates two cells filled with subphase (see Section VIII.A.2). Further, amphiphilic lipid molecules have been self-assembled in an aqueous medium surrounding unilamellar vesicles (see Section VIII.A.3). Subsequently, the S-layer protein of B. coagulans E38/vl, B. stearother-mophilus PV72/p2, or B. sphaericus CCM 2177 have been injected into the aqueous subphase (Fig. 15). As on solid supports, crystal growth of S-layer lattices on planar or vesicular lipid films is initiated simultaneously at many randomly distributed nucleation... [Pg.363]

It has been shown by FM that the phase state of the lipid exerted a marked influence on S-layer protein crystallization [138]. When the l,2-dimyristoyl-OT-glycero-3-phospho-ethanolamine (DMPE) surface monolayer was in the phase-separated state between hquid-expanded and ordered, liquid-condensed phase, the S-layer protein of B. coagulans E38/vl was preferentially adsorbed at the boundary line between the two coexisting phases. The adsorption was dominated by hydrophobic and van der Waals interactions. The two-dimensional crystallization proceeded predominately underneath the liquid-condensed phase. Crystal growth was much slower under the liquid-expanded monolayer, and the entire interface was overgrown only after prolonged protein incubation. [Pg.367]

The arrow indicates the liquid barrier layer. This use of a barrier melt illustrates that there are several ways to grow crystals which would be difficult to obtain under "ordinary" means of crystal growth, i.e.-prevention of oxidation and evaporation of GaAs during crystal growth. [Pg.270]

Another example is dendritic crystal growth under diffusion-limited conditions accompanied by potential or current oscillations. Wang et al. reported that electrodeposition of Cu and Zn in ultra-thin electrolyte showed electrochemical oscillation, giving beautiful nanostmctured filaments of the deposits [27,28]. Saliba et al. found a potential oscillation in the electrodeposition of Au at a liquid/air interface, in which the Au electrodeposition proceeds specifically along the liquid/air interface, producing thin films with concentric-circle patterns at the interface [29, 30]. Although only two-dimensional ordered structures are formed in these examples because of the quasi-two-dimensional field for electrodeposition, very recently, we found that... [Pg.241]

The hypothesis was extended to nucleation of hydrates from liquid water. An alternative hypothesis was proposed by Rodger [1516]. The main difference between these two sets of theories is that Rodger s hypothesis relates the initial formation process to the surface of the water, whereas the theory of Sloan and coworkers considers clusters related to soluted hydrate formers in liquid water as the primary start for joining, agglomeration, and crystal growth. The theories of Sloan and coworkers have been discussed and related to elements of the hypothesis proposed by Rodger [1043]. [Pg.179]


See other pages where Liquid crystal growth is mentioned: [Pg.917]    [Pg.917]    [Pg.277]    [Pg.297]    [Pg.335]    [Pg.16]    [Pg.219]    [Pg.293]    [Pg.283]    [Pg.24]    [Pg.104]    [Pg.161]    [Pg.236]    [Pg.238]    [Pg.853]    [Pg.298]    [Pg.307]    [Pg.295]    [Pg.296]    [Pg.218]    [Pg.226]    [Pg.226]    [Pg.358]    [Pg.115]    [Pg.155]    [Pg.84]    [Pg.260]    [Pg.301]    [Pg.242]    [Pg.399]    [Pg.423]    [Pg.213]   
See also in sourсe #XX -- [ Pg.13 ]




SEARCH



© 2024 chempedia.info