Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Linear trap quadrupole mass spectrometer

TABLE 16.2 ESI and APCI Method Parameters for Linear and Ion Trap Quadrupole Mass Spectrometer Analysis by Direct Infusion... [Pg.381]

QqLIT-MS-MS Quadrupole linear ion trap tandem mass spectrometer... [Pg.243]

One of the best tools for metabolite profiling is the hybrid QTRAP MS/MS system (Applied Biosystems).119-121 While the hybrid QTRAP MS/MS was initially considered a premier tool for metabolite identification, it has more recently been seen as a tool for quantitation and metabolite profiling. Li et al.122 described the use of a hybrid QTRAP MS/MS system for discovery PK assays plus metabolite profiling in the same analytical procedure. Because QTRAP MS/MS may be used as a triple quadrupole MS system, it can be used as part of a quantitative HPLC/MS/MS system. Because QTRAP MS/MS also has linear ion trap capabilities, it can be used for metabolite screening and characterization—essentially it combines the capabilities of a triple quadrupole mass spectrometer and a linear ion trap mass spectrometer. [Pg.216]

Another recent innovation is the QTrap mass spectrometer. The QTrap MS system combines the capabilities of a triple quadrupole mass spectrometer and a linear ion trap mass spectrometer into one MS system. Initially, the QTrap MS was used primarily as a tool for metabolite identification studies [34, 35, 38]. As reported by Li et al. [138], the QTrap MS can also be used as an excellent system for the quantitative analysis of discovery PK samples. The advantage of the QTrap MS system for quantitative analysis is that it can be used to look for plasma metabolites of the NCE and provide an easy way to monitor them while providing the quantitative data on the NCE. [Pg.418]

Since the analytical point of view most of current analytical methods are based on LC-MS/MS, but for some classes of pesticides GC-MS continues being the technique of choice. The use of quadrupole ion trap (QIT) to analyze multiple pesticide residues is limited to several multiclass pesticides in fruit [162], because of the limited number of ions that can be isolated at the same time. For this reason, the use of several time windows is required and this is indeed a strong limitation in practice. The use of hybrid triple quadrupole linear ion trap (QqLlT) mass spectrometer has provided significant contribution to the development of high-sensitive multiresidue analytical methods for pesticide control. An example of application is the method reported by Hernando et al. for the analysis of pesticide residues in olive oil [65]. [Pg.25]

The two-dimensional (2-D) or linear ion trap (LIT) emerged in the 2000s as an effective alternative to the 3-D trap. Before 1995, linear traps were used primarily as ion storage/transfer/ion-molecule reaction devices in combination with FTICR (Senko et al., 1997 Belov et al., 2001), TOF (Collings et al., 2001), 3D ion trap (Cha et al., 2000), and triple-quadrupole (Dolnikowski et al., 1988) mass spectrometers because LITs offer better ion storage efficiencies in comparison to 3D quadrupole ion traps of the same dimensions (Hager, 2002 Schwartz et al., 2002). In 2002, commercial LITs were introduced as either stand-alone mass spectrometers (Schwartz et al., 2002) or as part of a triple quadrupole mass spectrometer (Hager, 2002). [Pg.41]

The LIT introduced as part of a triple-quadrupole mass spectrometer is marketed under the name QTRAP. As shown in Fig. 1.26, the ion path and the differentially pumped region of QTRAP are similar to a triple quadrupole (API 3000, API 4000, and API 5000), except the Q3 is capable of functioning as a linear trap. QTRAP and its capabilities are described in detail in Chapter 3. Table 1.2 compares some of the advantages and limitations of QTRAP and LTQ mass spectrometers. [Pg.41]

Macek, B., Waanders, L. F., Olsen, J. V., and Mann, M. (2006). Top-down protein sequencing and MS3 on a hybrid linear quadrupole ion trap-orbitrap mass spectrometer. Mol. Cell. Proteomics 5 949-958. [Pg.218]

For abbreviation of analyte names see Sect. Abbreviations . ACN acetonitrile, APCI atmospheric pressure chemical ionization, dial, microdialysis samples, ESI electrospray ionization, FA formic acid, iso isocratic, IT ion trap, lin range linear range, MeOH methanol, MRM multiple reaction monitoring, MS full scan mass spectrometry, n.s. not specified, OAc acetate, QqQ triple quadrupole mass spectrometer, SIM selected ion monitoring, Solv HPLC solvent, SQ single quadrupole mass spectrometer, T temperature Ratios given as v/v... [Pg.314]

The linear trap with axial ejection was invented by Hager, from MDS Sciex, in 2002 [20], Figure 2.31 displays a scheme of such an ion trap included in the ion path of a triple quadrupole mass spectrometer. [Pg.119]

J. E. P. Syka, J. A. Marto, D. L. Bai, S. Homing, and M. W. Senko, Novel linear quadrupole ion trap/FT mass spectrometer Performance characterization and use in the comparative analysis of histone H3 post-translational modifications. J. Proteome Res. 3 (2004), 621-626. [Pg.340]

Many similar applications of quadrupole linear ion trap instruments have been reported [320-322,329,330], As discussed above, the Q-Trap is a triple quadrupole mass spectrometer capable of performing QMF type and 2D ion trapping experiments. This mass spectrometer can be operated exclusively in the QMF mode, as with a conventional QMF, or it can be operated exclusively in the ion trapping mode similar to a conventional 2D ion trap mass spectrometer. Advantages of using a Q-Trap mass spectrometer over a conventional QMF mass spectrometer come into play when one is attempting to perform both quantitative and qualitative metabolite detection/identification experiments from a single injection rather than separate... [Pg.181]

A triple-quadrupole linear ion trap (QqLIT), which is the most widely used hybrid linear ion trap, is based on the ion path of a triple-quadrupole mass spectrometer with Q3 operated as either a conventional RF/DC quadrupole mass filter or a linear ion trap mass spectrometer. " A QqLIT combines the advantages of a QqQ and a QIT within the same platform without compromising the performance of either mass spectrometer. It retains classical QqQ functions such as MRM, product ion scan, precursor ion scan, and constant neutral loss scan for quantitative and qualitative analysis, and possesses MS" ion accumulation... [Pg.209]

One of the latest mass analyzer is the linear-trap quadrupole (LTQ) Orbitrap mass spectrometer. In this, the commercial LTQ is coupled with an ion trap, developed by Makarov [73, 74]. Due to the resolving power (between 70000 and 800000) and the high mass accuracy (2-5 ppm), Orbitrap mass analyzers, for example, cab be used for the identification of peptides in protein analysis or for metabolomic studies. In addition, the selectivity of MS/MS experiments can be greatly improved. However, the coupling is not useful with UHPLC for rapid chromatographic pre-separation, as the data acquisition rate is too low for a reproducible integration of the narrow signals produced with UHPLC. [Pg.10]

Figure 6.29 shows the hnear quadrupole mass spectrometer designed (Schwartz 2002) to exploit radial ejection by appropriate resonance activation techniques, which are entirely analogous to those employed in Paul traps. A conventional linear quadrupole rod set (tg = 4mm) was cut into three sections 12, 37 and 12mm long. The central section has a 30 x 0.25 mm ejection slot cut in... [Pg.306]


See other pages where Linear trap quadrupole mass spectrometer is mentioned: [Pg.264]    [Pg.348]    [Pg.96]    [Pg.795]    [Pg.185]    [Pg.169]    [Pg.317]    [Pg.178]    [Pg.211]    [Pg.214]    [Pg.234]    [Pg.48]    [Pg.634]    [Pg.635]    [Pg.220]    [Pg.149]    [Pg.275]    [Pg.293]    [Pg.455]    [Pg.2781]    [Pg.90]    [Pg.14]    [Pg.276]    [Pg.308]    [Pg.136]    [Pg.122]    [Pg.210]    [Pg.268]    [Pg.166]    [Pg.115]    [Pg.330]   
See also in sourсe #XX -- [ Pg.122 , Pg.123 ]




SEARCH



Linear trap quadrupole mass

Linear-trap quadrupole

Linear-trap quadrupole Orbitrap mass spectrometer

Mass quadrupole

Mass spectrometer quadrupole

Mass spectrometer trapping

Mass trapping

Quadrupol mass spectrometers

Quadrupole linear

Quadrupole linear ion trap mass spectrometers

Quadrupole spectrometers

Quadrupole trap

Spectrometer linearity

Trapping quadrupole

© 2024 chempedia.info