Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Li-CuO primary cells

The semiconductive properties and tunnel structure of sulfide and transition-metal oxides led to the use of these materials in lithium power sources (Table 2.5). Several lithium-based chemistries were successfully applied to replace the prior system Zn/AgO and later the lithium-iodine batteries in implantable medical devices [59-61]. For example, Li//CuO, Li//V205, Li//CF and more recently Li// Ag2V40ii couples have been adopted to power cardiac pacemakers requiring less that 200 pW [62,63]. The lithium/carbon monofluoride (Li//CFJ primary cells are very attractive in several applications because of the double energy density with respect to the state-of-the-art LiZ/MnOa primary batteries (theoretically 2203 against 847 Wh kg ). [Pg.39]

Several types of primary batteries have been developed that use lithium-metal anodes and solid cathodes. This entry reviews the more common commercial systems, namely Li-FeS2, Li-MnOa, and Li-CFx- Readers are referred to the relevant sections for information on Li-V20s and Li-Ag2V40ii cells that are used for reserve and medical battery applications, respectively. There has been a wide range of cathodes developed in the laboratory and also marketed for specialty applications [1], but most have never been produced commercially. (Li-CuO cells were made for some military applications [2], but production was discontinued in the mid-1990s). Before going into details on the aforementioned three types mostly used in consumer applications, we will cover the main characteristics that they have in common. [Pg.1175]

As part of a program aimed at the prediction of the residual capacity of primary cells the impedances of small Li-CuO cells have been measured over a large frequency range. The results are recorded and an interpretation of the data is given in this paper. [Pg.150]

These researches opened the door to the fabrication and commercialization of varieties of primary hthium batteries since the late l%0s nonaqueous hthium cells, especially the 3-V primary systems, have been developed. These systems include lithium-sulfur dioxide (Li//S02) cehs, lithium-polycarbon monofluoride (Li//(CF t) ) cells introduced by Matsuschita in 1973, lithium-manganese oxide (Li//Mn02) cells commercialized by Sanyo in 1975, lithium-copper oxide (Li//CuO) cells, lithium-iodine (Li//(P2VP)1J cells. During the same period, molten salt systems (LiCl-KCl eutecticum) using a Li-Al alloy anode and a FeS cathode were introduced [1]. The lithium-iodine battery has been used to power more than four million cardiac pacemakers since its introduction in 1972. During this time the lithium-iodine system has established a record of reliability and performance unsurpassed by any other electrochemical power source [18]. [Pg.30]


See other pages where Li-CuO primary cells is mentioned: [Pg.149]    [Pg.151]    [Pg.153]    [Pg.155]    [Pg.157]    [Pg.159]    [Pg.161]    [Pg.163]    [Pg.149]    [Pg.151]    [Pg.153]    [Pg.155]    [Pg.157]    [Pg.159]    [Pg.161]    [Pg.163]    [Pg.398]    [Pg.150]    [Pg.204]   


SEARCH



Primary cells

© 2024 chempedia.info