Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lewis acids relative acidities

In summary, water is clearly an extremely bad solvent for coordination of a hard Lewis acid to a hard Lewis base. Hence, catalysis of Diels-Alder reactions in water is expected to be difficult due to the relative inefficiency of the interactions between the Diels-Alder reactants and the Lewis-acid catalyst in this medium. [Pg.31]

A combination of the promoting effects of Lewis acids and water is a logical next step. However, to say the least, water has not been a very popular medium for Lewis-acid catalysed Diels-Alder reactions, which is not surprising since water molecules interact strongly with Lewis-acidic and the Lewis-basic atoms of the reacting system. In 1994, when the research described in this thesis was initiated, only one example of Lewis-acid catalysis of a Diels-Alder reaction in water was published Lubineau and co-workers employed lanthanide triflates as a catalyst for the Diels-Alder reaction of glyoxylate to a relatively unreactive diene . No comparison was made between the process in water and in organic solvents. [Pg.31]

Rate constants for the Diels-Alder reaction of 2.4b-e have also been determined. The results are shown in Table 2.3. These data allow an analysis of the influence of substituents on the Lewis-acid catalysed Diels-Alder reaction. This is interesting, since there are indications for a relatively large... [Pg.54]

Interestingly, at very low concentrations of micellised Qi(DS)2, the rate of the reaction of 5.1a with 5.2 was observed to be zero-order in 5.1 a and only depending on the concentration of Cu(DS)2 and 5.2. This is akin to the turn-over and saturation kinetics exhibited by enzymes. The acceleration relative to the reaction in organic media in the absence of catalyst, also approaches enzyme-like magnitudes compared to the process in acetonitrile (Chapter 2), Cu(DS)2 micelles accelerate the Diels-Alder reaction between 5.1a and 5.2 by a factor of 1.8710 . This extremely high catalytic efficiency shows how a combination of a beneficial aqueous solvent effect, Lewis-acid catalysis and micellar catalysis can lead to tremendous accelerations. [Pg.143]

As expected, the solvent has a significant effect on the endo-exo selectivity of the uncatalysed Diels-Alder reaction between 1 and 2. In contrast, the corresponding effect on the Lewis-acid catalysed reaction is small. There is no beneficial effect of water on the endo-exo selectivity of the catalysed Diels-Alder reaction. The endo-exo selectivity in water is somewhat diminished relative to that in ethanol and acetonitrile. [Pg.174]

Friedel-Crafts catalysts are electron acceptors, ie, Lewis acids. The alkylating ability of ben2yl chloride was selected to evaluate the relative catalytic activity of a large number of Lewis acid haUdes. The results of this study suggest four categories of catalyst activity (200) (Table 1). [Pg.564]

Mote stable catalysts ate obtained by using fluorinated graphite or fluorinated alumina as backbones, and Lewis acid halides, such as SbF, TaF, and NbF, which have a relatively low vapor pressure. These Lewis acids ate attached to the fluorinated soHd supports through fluorine bridging. They show high reactivity in Friedel-Crafts type reactions including the isomerization of straight-chain alkanes such as / -hexane. [Pg.565]

The conversion of aromatic monomers relative to C-5—C-6 linear diolefins and olefins in cationic polymerizations may not be proportional to the feedblend composition, resulting in higher resin aromaticity as determined by nmr and ir measurements (43). This can be attributed to the differing reactivity ratios of aromatic and aHphatic monomers under specific Lewis acid catalysis. Intentional blocking of hydrocarbon resins into aromatic and aHphatic regions may be accomplished by sequential cationic polymerization employing multiple reactors and standard polymerization conditions (45). [Pg.354]

The mineral talc is extremely soft (Mohs hardness = 1), has good sHp, a density of 2.7 to 2.8 g/cm, and a refractive index of 1.58. It is relatively inert and nonreactive with conventional acids and bases. It is soluble in hydroduoric acid. Although it has a pH in water of 9.0 to 9.5, talc has Lewis acid sites on its surface and at elevated temperatures is a mild catalyst for oxidation, depolymerization, and cross-linking of polymers. [Pg.301]

The boron tnhahdes are strong Lewis acids, however, the order of relative acid strengths, BI > > BCl > BF, is contrary to that expected... [Pg.222]

Zinc chloride is a Lewis acid catalyst that promotes cellulose esterification. However, because of the large quantities required, this type of catalyst would be uneconomical for commercial use. Other compounds such as titanium alkoxides, eg, tetrabutoxytitanium (80), sulfate salts containing cadmium, aluminum, and ammonium ions (81), sulfamic acid, and ammonium sulfate (82) have been reported as catalysts for cellulose acetate production. In general, they require reaction temperatures above 50°C for complete esterification. Relatively small amounts (<0.5%) of sulfuric acid combined with phosphoric acid (83), sulfonic acids, eg, methanesulfonic, or alkyl phosphites (84) have been reported as good acetylation catalysts, especially at reaction temperatures above 90°C. [Pg.253]

Ethers are weakly basic and are converted to unstable oxonium salts by strong acids such as sulfudc acid, perchlodc acid, and hydrobromic acid relatively stable complexes ate formed between ethers and Lewis acids such as boron trifluodde, aluminum chlodde, and Gtignatd reagents (qv) (9) ... [Pg.425]

It has been possible to obtain thermodynamic data for the ionization of alkyl chlorides by reaction with SbFs, a Lewis acid, in the nonnucleophilic solvent S02C1F. It has been foimd that the solvation energies of the carbocations in this medium are small and do not differ much from one another, making comparison of the nonisomeric systems possible. As long as subsequent reactions of the carbocation can be avoided, the thermodynamic characteristics of this reaction provide a measure of the relative ease of carbocation formation in solution. [Pg.280]

Other natural product-based resins also became widely used, such as the light colored Lewis acid oligomerized products of terpenes such as a-pinene, p-pinene, and limonene. These natural product resins are relatively expensive, however, and formulators now often use the newer, less expensive synthetic resins in present day natural rubber PSAs. These are termed the aliphatic or C-5 resins and are Lewis acid oligomerized streams of predominately C-5 unsaturated monomers like cis- and /rawi-piperylene and 2-methyl-2-butenc [37]. These resins are generally low color products with compatibility and softening points similar to the natural product resins. Representative products in the marketplace would be Escorez 1304 and Wingtack 95. In most natural rubber PSA formulations, rubber constitutes about 100 parts and the tackifier about 75-150 parts. [Pg.478]

For the activation of a substrate such as 19a via coordination of the two carbonyl oxygen atoms to the metal, one should expect that a hard Lewis acid would be more suitable, since the carbonyl oxygens are hard Lewis bases. Nevertheless, Fu-rukawa et al. succeeded in applying the relative soft metal palladium as catalyst for the 1,3-dipolar cycloaddition reaction between 1 and 19a (Scheme 6.36) [79, 80]. They applied the dicationic Pd-BINAP 54 as the catalyst, and whereas this type of catalytic reactions is often carried out at rt or at 0°C, the reactions catalyzed by 54 required heating at 40 °C in order to proceed. In most cases mixtures of endo-21 and exo-21 were obtained, however, high enantioselectivity of up to 93% were obtained for reactions of some derivatives of 1. [Pg.237]

No single examples have been reported so far for the catalyzed asymmetric diazoalkane cydoadditions. Based on the kinetic data on the relative reaction rates observed by Huisgen in the competitive diazomethane cydoadditions between 1-alkene and acrylic ester (Scheme 7.32), it is found that diazomethane is most nu-deophilic of all the 1,3-dipoles examined (kaciyiate/fci-aikene = 250000) [78]. Accordingly, the cydoadditions of diazoalkanes to electron-defident alkenes must be most efficient when catalyzed by a Lewis acid catalyst. The author s group has become aware of this possibility and started to study the catalyzed enantioselective diazoalkane cydoadditions of 3-(2-alkenoyl)-2-oxazolidinones. [Pg.278]


See other pages where Lewis acids relative acidities is mentioned: [Pg.373]    [Pg.9]    [Pg.30]    [Pg.46]    [Pg.54]    [Pg.63]    [Pg.161]    [Pg.105]    [Pg.485]    [Pg.244]    [Pg.244]    [Pg.380]    [Pg.369]    [Pg.47]    [Pg.37]    [Pg.163]    [Pg.164]    [Pg.53]    [Pg.165]    [Pg.148]    [Pg.236]    [Pg.236]    [Pg.470]    [Pg.57]    [Pg.669]    [Pg.435]    [Pg.439]    [Pg.30]    [Pg.2]    [Pg.95]    [Pg.145]    [Pg.214]    [Pg.275]    [Pg.303]   
See also in sourсe #XX -- [ Pg.21 , Pg.23 , Pg.24 , Pg.25 , Pg.26 ]




SEARCH



Acids relative

© 2024 chempedia.info