Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lead formate, preparation

Lead formate separates from aqueous solution without water of crystallisation. It can therefore be used for the preparation of anhydrous formic acid. For this purpose, the powdered lead formate is placed in the inner tube of an ordinary jacketed cond ser, and there held loosely in position by plugs of glass-wool. The condenser is then clamped in an oblique position and the lower end fitted into a receiver closed with a calcium chloride tube. A current of dry hydrogen sulphide is passed down the inner tube of the condenser, whilst steam is passed through the jacket. The formic acid which is liberated... [Pg.114]

Nitro compounds are easily reduced, catalytically or chemically, to amino compounds. Incomplete reduction can lead to a hydroxylamino derivative or to binuclear azo, azoxy, and hydrazo compouds, e.g., 789 790, 791. Examples include reduction of 3-nitropyridines using aqueous sodium hydrosulfite at room temperature <2005JME5104> and of 2-nitropyridine by transfer hydrogenation in the presence of 10% Pd/G and recyclable polymer-supported formate, prepared from aminomethylpolystyrene resin and ammonium formate <2005SC223>. A nitro group can be reduced in the presence of an A-oxidc group, e.g., 784 782. [Pg.350]

Its heat of combustion and heat of detonation are 631 and 368 cal/g, respectively (or 184 and 107 kcal/mol). The released gas volume is 308 cm /g at STP. It forms highly shock-sensitive copper and zinc azides when mixed with the solutions of copper and zinc salts. Its contact with these metals or then-alloys over a period of time results in the formation of their azides, too. Reaction with carbon disulfide is violently explosive. There is a report of an explosion resulting from the addition of calcium stearate in a lead azide preparation (MCA 1962). [Pg.619]

The above simple process cannot be applied to the preparation of the homo-logues a higher temperature is requir (di-n-amyl ether, for example, boils at 169°) and, under these conditions, alkene formation predominates, leading ultimately to carbonisation and the production of sulphur dioxide. If, however, the water is largely removed by means of a special device (see Fig. Ill, 57,1) as soon as it is formed, good 300 of ethers may be obtained from primary alcohols, for example ... [Pg.309]

Note on the laboratory preparation of monoethylaniline. Although the laboratory preparation of monomethyl- or monoethyl-aniline is hardly worth whUe, the following experimental details may be useful to those who wish to prepare pure monoethylaniline directly from amline. In a flask, fitted with a double surface reflux condenser, place 50 g. (49 ml.) of aniline and 65 g. of ethyl bromide, and boU gently for 2 hours or until the mixture has almost entirely sohdified. Dissolve it in water and boil off the small quantity of unreacted ethyl bromide. Render the mixture alkaUne with concentrated sodium hydroxide solution, extract the precipitated bases with three 50 ml. portions of ether, and distil off the ether. The residual oil contains anihne, mono- and di-ethylaniline. Dissolve it in excess of dilute hydrochloric acid (say, 100 ml. of concentrated acid and 400 ml. of water), cool in ice, and add with stirring a solution of 37 g. of sodium nitrite in 100 ml. of water do not allow the temperature to rise above 10°. Tnis leads to the formation of a solution of phenyl diazonium chloride, of N-nitrosoethylaniline and of p-nitrosodiethylaniline. The nitrosoethylaniline separates as a dark coloured oil. Extract the oil with ether, distil off the ether, and reduce the nitrosoamine with tin and hydrochloric acid (see above). The yield of ethylaniline is 20 g. [Pg.571]

Evidence from the viscosities, densities, refractive indices and measurements of the vapour pressure of these mixtures also supports the above conclusions. Acetyl nitrate has been prepared from a mixture of acetic anhydride and dinitrogen pentoxide, and characterised, showing that the equilibria discussed do lead to the formation of that compound. The initial reaction between nitric acid and acetic anhydride is rapid at room temperature nitric acid (0-05 mol 1 ) is reported to be converted into acetyl nitrate with a half-life of about i minute. This observation is consistent with the results of some preparative experiments, in which it was found that nitric acid could be precipitated quantitatively with urea from solutions of it in acetic anhydride at —10 °C, whereas similar solutions prepared at room temperature and cooled rapidly to — 10 °C yielded only a part of their nitric acid ( 5.3.2). The following equilibrium has been investigated in detail ... [Pg.80]

In addition to the initial reaction between nitric acid and acetic anhydride, subsequent changes lead to the quantitative formation of tetranitromethane in an equimolar mixture of nitric acid and acetic anhydride this reaction was half completed in 1-2 days. An investigation of the kinetics of this reaction showed it to have an induction period of 2-3 h for the solutions examined ([acetyl nitrate] = 0-7 mol 1 ), after which the rate adopted a form approximately of the first order with a half-life of about a day, close to that observed in the preparative experiment mentioned. In confirmation of this, recent workers have found the half-life of a solution at 25 °C of 0-05 mol 1 of nitric acid to be about 2 days. ... [Pg.81]

The nitration of the 2-anilino-4-phenylselenazole (103) is much more complicated. Even careful nitration using the nitrate-sulfuric acid method leads to the formation of a mixture of variously nitrated compounds in an almost violent reaction. By the use of column chromatography as well as thin-layer chromatography a separation could be made, and the compounds could be partly identified by an independent synthesis. Scheme 33 shows a general view of the substances prepared. Ring fission was not obser ed under mild conditions. [Pg.243]

Triiodoacetic acid [594-68-3] (I CCOOH), mol wt 437.74, C2HO2I3, mp 150°C (decomposition), is soluble in water, ethyl alcohol, and ethyl ether. It has been prepared by heating iodic acid and malonic acid in boiling water (63). Solutions of triiodoacetic acid are unstable as evidenced by the formation of iodine. Triiodoacetic acid decomposes when heated above room temperature to give iodine, iodoform, and carbon dioxide. The sodium and lead salts have been prepared. [Pg.90]

Bis(azol-2-5l)stilbenes (2(i]ll such as (4) have been prepared. 4,4 -Dihydrazinostilbene-2,2 -disulfonic acid, obtained from the diamino compound, on treatment with 2 moles of oximinoacetophenone and subsequent ring closure, leads to the formation of (4) [23743-28 ]. Such compounds are used chiefly as washing powder additives for the brightening of cotton fabrics, and exhibit excellent light- and hypochlorite-stabiUty. [Pg.115]

Olefin and acetylene complexes of Au(I) can be prepared by direct iateraction of the unsaturated compounds with a Au(I) hahde (190,191). The resulting products, however, are not very stable and decompose at low temperatures. Reaction with Au(III) hahdes leads to halogenation of the unsaturated compound and formation of Au(I) complexes or polynuclear complexes with gold ia mixed oxidatioa states. [Pg.386]

Another important class of titanates that can be produced by hydrothermal synthesis processes are those in the lead zirconate—lead titanate (PZT) family. These piezoelectric materials are widely used in manufacture of ultrasonic transducers, sensors, and minia ture actuators. The electrical properties of these materials are derived from the formation of a homogeneous soHd solution of the oxide end members. The process consists of preparing a coprecipitated titanium—zirconium hydroxide gel. The gel reacts with lead oxide in water to form crystalline PZT particles having an average size of about 1 ]lni (Eig. 3b). A process has been developed at BatteUe (Columbus, Ohio) to the pilot-scale level (5-kg/h). [Pg.500]

Tetrabasic Lead Sulfate. Tetrabasic lead sulfate [12065-90-6] 4PbO PbSO, mol wt 1196.12, sp gr 8.15, is made by fusion of stoichiometric quantities of Htharge (PbO) and lead sulfate (PbSO heat of formation, Ai/ = — 1814 kJ/mol (—434.1 kcal/mol). Alternatively, tetrabasic lead sulfate may be prepared by boiling the components in aqueous suspensions. At about 70°C, tribasic hydrate reacts with lead oxide to form tetrabasic sulfate. At 80°C, this transformation is complete in - 20 hours. Tetrabasic lead sulfate is used in limited quantities in Europe as a PVC stabilizer. However, in the United States, lead-acid batteries have been developed by BeU Telephone Laboratories, which contain tetrabasic lead sulfate. Such batteries are used for emergency power at telephone switchboard stations and have an anticipated service life of over 50 years. [Pg.70]

Lead Carbonate. Lead carbonate [598-63-0] PbCO, mol wt 267.22, d = 6.6g/cm, forms colorless orthorhombic crystals it decomposes at about 315°C. It is nearly insoluble in cold water (0.00011 g/100 mL at 20°C), but is transformed in hot water to the basic carbonate, 2PbC03 Pb(OH)2. Lead carbonate is soluble in acids and alkalies, but insoluble in alcohol and ammonia. It is prepared by passing CO2 iuto a cold dilute solution of lead acetate, or by shaking a suspension of a lead salt less soluble than the carbonate with ammonium carbonate at a low temperature to avoid formation of basic lead carbonate. [Pg.71]

AMMONIUM compounds). Diammonium dimolybdate [27546-07-2] (NH 2 2 7 " ble commercially as the tetrahydrate and prepared from MoO and excess NH in aqueous solution at 100°C, has an infinite chain stmcture based on MoO octahedra. In aqueous solution the behavior of Mo(VI) is extremely pH-dependent (4). Above pH 7 molybdenum(VI) occurs as the tetrahedral oxyanion MoO , but below pH 7 a complex series of concentration-, temperature-, and pH-dependent equiUbria exist. The best known of these equiUbria lead to the formation of the heptamolybdate,... [Pg.469]

Mutagenicity. The AJ-nitrosamines, in general, induce mutations in standard bacterial-tester strains (117). As with carcinogenicity, enzymatic activation, typically with Hver microsomal preparations, is required. Certain substituted A/-nitrosamine derivatives (12) induce mutations without microsomal activation (31,33,34). Because the a-acetoxy derivatives can hydroly2e to the corresponding a-hydroxy compounds, this is consistent with the hypothesis that enzymatic oxidation leads to the formation of such unstable a-hydroxy intermediates (13) (118). However, for simple /V-nitrosamines, no systematic relationship has been found between carcinogenicity and mutagenicity (117,119—123). [Pg.110]

The N-oxides of isoquinolines have proved to be excellent intermediates for the preparation of many compounds. Trialkylboranes give 1-alkyl derivatives (147). With cyanogen bromide in ethanol, ethyl N-(l- and 4-isoquinolyl)carbamates are formed (148). A compHcated but potentially important reaction is the formation of 1-acetonyLisoquinoline and 1-cyanoisoquinoline [1198-30-7] when isoquinoline N-oxide reacts with metbacrylonitrile in the presence of hydroquinone (149). Isoquinoline N-oxide undergoes direct acylamination with /V-benzoylanilinoisoquinoline salts to form 1-/V-benzoylanilinoisoquinoline [53112-20-4] in 55% yield (150). A similar reaction of AJ-sulfinyl- -toluenesulfonamide leads to l-(tos5larriino)isoquinoline [25770-51-8] which is readily hydrolyzed to 1-aminoisoquinoline (151). [Pg.396]


See other pages where Lead formate, preparation is mentioned: [Pg.678]    [Pg.86]    [Pg.297]    [Pg.5]    [Pg.20]    [Pg.228]    [Pg.22]    [Pg.209]    [Pg.512]    [Pg.114]    [Pg.34]    [Pg.558]    [Pg.386]    [Pg.386]    [Pg.386]    [Pg.536]    [Pg.323]    [Pg.516]    [Pg.146]    [Pg.68]    [Pg.70]    [Pg.28]    [Pg.54]    [Pg.150]    [Pg.183]    [Pg.285]    [Pg.286]    [Pg.36]    [Pg.38]    [Pg.58]    [Pg.248]    [Pg.248]   
See also in sourсe #XX -- [ Pg.113 ]




SEARCH



Lead Preparation

© 2024 chempedia.info