Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Latex reactions

After the mbber latex is produced, it is subjected to further polymerization in the presence of styrene (CgHg) and acrylonitrile (C H N) monomers to produce the ABS latex. This can be done in batch, semibatch, or continuous reactors. The other ingredients required for this polymerization are similar to those required for the mbber latex reaction. [Pg.204]

The best choice for seeding the 5000-A latex reaction was the B. F. Goodrich monodisperse 2000-A latex. Preliminary calculations were necessary to determine the quantity of monomer required to grow the particles to the desired diameter. A simple multiplication factor was determined from a ratio of the volume of the initial seed particle to the volume of the final particle. If the volume of a sphere = V = 4/3 ttt3... [Pg.276]

In mass polymerization bulk monomer is converted to polymers. In solution polymerization the reaction is completed in the presence of a solvent. In suspension, dispersed mass, pearl or granular polymerization the monomer, containing dissolved initiator, is polymerized while dispersed in the form of fine droplets in a second non-reactive liquid (usually water). In emulsion polymerization an aqueous emulsion of the monomer in the presence of a water-soluble initiator Is converted to a polymer latex (colloidal dispersion of polymer in water). [Pg.321]

Waterborne contact adhesives contain an elastomer in latex form, usually an acryflc or neoprene-based latex, and a heat-reactive, cross-linkable phenohc resin in the form of an aqueous dispersion. The phenoHc resin improves metal adhesion, green strength, and peel strength at elevated temperature. A typical formulation contains three parts latex and one part phenohc dispersion (dry weight bases). Although metal oxides may be added, reaction of the oxide with the phenohc resin does not occur readily. [Pg.304]

The completion stage is identified by the fact that all the monomer has diffused into the growing polymer particles (disappearance of the monomer droplet) and reaction rate drops off precipitously. Because the free radicals that now initiate polymerization in the monomer-swollen latex particle can more readily attack unsaturation of polymer chains, the onset of gel is also characteristic of this third stage. To maintain desirable physical properties of the polymer formed, emulsion SBR is usually terminated just before or at the onset of this stage. [Pg.495]

A typical recipe for batch emulsion polymerization is shown in Table 13. A reaction time of 7—8 h at 30°C is requited for 95—98% conversion. A latex is produced with an average particle diameter of 100—150 nm. Other modifying ingredients may be present, eg, other colloidal protective agents such as gelatin or carboxymethylcellulose, initiator activators such as redox types, chelates, plasticizers, stabilizers, and chain-transfer agents. [Pg.439]

Continuous polymerization systems offer the possibiUty of several advantages including better heat transfer and cooling capacity, reduction in downtime, more uniform products, and less raw material handling (59,60). In some continuous emulsion homopolymerization processes, materials are added continuously to a first ketde and partially polymerized, then passed into a second reactor where, with additional initiator, the reaction is concluded. Continuous emulsion copolymerizations of vinyl acetate with ethylene have been described (61—64). Recirculating loop reactors which have high heat-transfer rates have found use for the manufacture of latexes for paint appHcations (59). [Pg.464]

Polymerization Reactions. The polymerization of butadiene with itself and with other monomers represents its largest commercial use. The commercially most important polymers are styrene—butadiene mbber (SBR), polybutadiene (BR), styrene—butadiene latex (SBL), acrylonittile—butadiene—styrene polymer (ABS), and nittile mbber (NR). The reaction mechanisms are free-radical, anionic, cationic, or coordinate, depending on the nature of the initiators or catalysts (194—196). [Pg.345]

The polymerization iavolves the reaction of sodium polysulftde with ethylene dichloride ia aqueous media at 70°C for 2—6 h, yielding an aqueous dispersion (latex) of the polysulftde mbber. [Pg.471]

Monomer conversion (79) is followed by measuring the specific gravity of the emulsion. The polymerization is stopped at 91% conversion (sp gr 1.069) by adding a xylene solution of tetraethylthiuram disulfide. The emulsion is cooled to 20°C and aged at this temperature for about 8 hours to peptize the polymer. During this process, the disulfide reacts with and cleaves polysulfide chain segments. Thiuram disulfide also serves to retard formation of gel polymer in the finished dry product. After aging, the alkaline latex is acidified to pH 5.5—5.8 with 10% acetic acid. This effectively stops the peptization reaction and neutralizes the rosin soap (80). [Pg.541]

The molecular weight of the polymers is controlled by temperature (for the homopolymer), or by the addition of organic acid anhydrides and acid hahdes (37). Although most of the product is made in the first reactor, the background monomer continues to react in a second reactor which is placed in series with the first. When the reaction is complete, a hindered phenoHc or metal antioxidant is added to improve shelf life and processibiUty. The catalyst is deactivated during steam coagulation, which also removes solvent and unreacted monomer. The cmmbs of water-swoUen product are dried and pressed into bale form. This is the only form in which the mbber is commercially available. The mbber may be converted into a latex form, but this has not found commercial appHcation (38). [Pg.555]

Various polymers and latexes ai e used in manufacturing different articles for medical use. Safety measures in using such articles require strict control measures which provide for detecting toxic substances on hygienic standard levels or on the permissible migration level (PML) (mg/dm ). Chromatographic reaction methods ai e used to reveal formaldehyde, phenol, and epichlorhydrin. [Pg.389]


See other pages where Latex reactions is mentioned: [Pg.295]    [Pg.1479]    [Pg.1479]    [Pg.201]    [Pg.26]    [Pg.157]    [Pg.295]    [Pg.1479]    [Pg.1479]    [Pg.201]    [Pg.26]    [Pg.157]    [Pg.92]    [Pg.194]    [Pg.386]    [Pg.413]    [Pg.362]    [Pg.23]    [Pg.23]    [Pg.23]    [Pg.27]    [Pg.67]    [Pg.219]    [Pg.220]    [Pg.265]    [Pg.268]    [Pg.274]    [Pg.274]    [Pg.275]    [Pg.314]    [Pg.439]    [Pg.466]    [Pg.352]    [Pg.393]    [Pg.138]    [Pg.49]    [Pg.261]    [Pg.435]    [Pg.541]    [Pg.2291]    [Pg.283]    [Pg.429]    [Pg.408]   
See also in sourсe #XX -- [ Pg.1479 ]

See also in sourсe #XX -- [ Pg.1018 ]




SEARCH



Latex allergic reactions

Latex chemical reactions

© 2024 chempedia.info