Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lasers, types matrix-assisted laser desorption

Bright, J. J. Claydon, M. A. Soufian, M. Gordon, D. B. Rapid typing of bacteria using matrix-assisted laser desorption ionization time of flight mass spectrometry and pattern recognition software. J. Microbiol. Meth. 2002,48,127-138. [Pg.122]

It is therefore not surprising that the interest in PyMS as a typing tool diminished at the turn of the twenty-first century and hence why taxonomists have turned to MS-based methods that use soft ionization methods such as electrospray ionization (ESI-MS) and matrix-assisted laser desorption ionization (MALDI MS). These methods generate information-rich spectra of metabolites and proteins, and because the molecular ion is seen, the potential for biomarker discovery is being realized. The analyses of ESI-MS and MALDI-MS data will still need chemometric methods, and it is hoped that researchers in these areas can look back and learn from the many PyMS studies where machine learning was absolutely necessary to turn the complex pyrolysis MS data into knowledge of bacterial identities. [Pg.334]

Other types of atmospheric pressure ionisation detectors are available including APPI (photon ionisation) and MALDI (matrix-assisted laser desorption ionisation). More conventional detection systems for LC include UV absorption, fluorescence and evaporative light scattering. Developments in column packings,... [Pg.570]

The development glycopeptide libraries obtained by the split-mix method is severely hampered by the lack of concurrent development of a general, facile separation and characterization technology. Some headway has been made with chemical coding of the libraries, but very few direct methods of analysis exist. One promising method that could be applied to the direct characterization of both types of libraries is mass spectrometry. More specifically, post-source-decay matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (PSD-MALDI-TOF-MS) and CID-FAB/MS/MS have been used to characterize glycopeptides.53-55... [Pg.290]

While fast atom bombardment (FAB) [66] and TSI [25] built up the basis for a substance-specific analysis of the low-volatile surfactants within the late 1980s and early 1990s, these techniques nowadays have been replaced successfully by the API methods [22], ESI and APCI, and matrix assisted laser desorption ionisation (MALDI). In the analyses of anionic surfactants, the negative ionisation mode can be applied in FIA-MS and LC-MS providing a more selective determination for these types of compounds than other analytical approaches. Application of positive ionisation to anionics of ethoxylate type compounds led to the abstraction of the anionic moiety in the molecule while the alkyl or alkylaryl ethoxylate moiety is ionised in the form of AE or APEO ions. Identification of most anionic surfactants by MS-MS was observed to be more complicated than the identification of non-ionic surfactants. Product ion spectra often suffer from a reduced number of negative product ions and, in addition, product ions that are observed are less characteristic than positively generated product ions of non-ionics. The most important obstacle in the identification and quantification of surfactants and their metabolites, however, is the lack of commercially available standards. The problems with identification will be aggravated by an absence of universally applicable product ion libraries. [Pg.376]

Recent advances in mass spectrometry (MS) technology have provided researchers with an unparalleled ability to identify the types and patterns of secondary biochemical modifications found on proteins in living cells. Matrix-assisted laser desorption/ionization-MS (MALDI-MS) analyses have shown, for example, that HMGA proteins in vivo are simultaneously subject to complex patterns of phosphorylation, acetylation and methylation and that, within the same cell type, different isoforms of these proteins can exhibit quite different modification patterns [33]. Furthermore, these in vivo modifications have been demonstrated to markedly alter the binding affinity of HMGA proteins for both DNA and chromatin substrates in vitro [33]. Nevertheless, due to their number and complexity, it has been difficult to determine the actual biological function(s) played by these biochemical modifications in living cells. [Pg.161]

MALDI-TOFF stands for matrix-assisted laser desorption ionization time of flight. MALDI refers to the source of ionization whereas TOF indicates type of the mass analyzer. [Pg.107]

In 1974, Comarisov and Marshall60 developed Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). This technique allows mass spectrometric measurements at ultrahigh mass resolution (R = 100000-1000000), which is higher than that of any other type of mass spectrometer and has the highest mass accuracy at attomole detection limits. FTICR-MS is applied today together with soft ionization techniques, such as nano ESI (electrospray ionization) or MALDI (matrix assisted laser/desorption ionization) sources. [Pg.21]

Dreisewerd, K., Rohlfing, A., Spottke, B., Urbanke, C., and Henkel, W. (2004). Characterization of whole fibril-forming collagen proteins of types I, III, and V from foetal calf skin by infrared matrix-assisted laser desorption ionization mass spectrometry. Anal. Chem. 76, 3482-3491. [Pg.368]

Mass spectrometers are used not only to detect the masses of proteins and peptides, but also to identify the proteins, to compare patterns of proteins and peptides, and to scan tissue sections for specific masses. MS is able to do this by giving the mass-to-charge ratio of an ionized species as well as its relative abundance. For biological sample analysis, mass spectrometers are connected to an ionizing source, which is usually matrix-assisted laser desorption ionization (MALDI) [14], surface-enhanced laser desorption/ioni-zation (SELDI, a modified form of MALDI) [15], or electrospray ionization [16]. These interfaces enable the transfer of the peptides or proteins from the solid or liquid phase, respectively, to the gas (vacuum) phase inside the mass spectrometer. Both MALDI and electrospray ionization can be connected to different types of mass analyzers, such as quadrupole, quadruple-ion-traps, time of flight (TOF), or hybrid instruments such as quadrupole-TOF or Fourier transform-ion cyclotron resonance. Each of these instruments can... [Pg.163]

Developments in mass spectrometry technology, together with the availability of extensive DNA and protein sequence databases and software tools for data mining, has made possible rapid and sensitive mass spectrometry-based procedures for protein identification. Two basic types of mass spectrometers are commonly used for this purpose Matrix-assisted laser desorption/ionization (MALDI)-time-of-flight (TOF) mass spectrometry (MS) and electrospray ionization (ESI)-MS. MALDI-TOF instruments are now quite common in biochemistry laboratories and are very simple to use, requiring no special training. ESI instruments, usually coupled to capillary/nanoLC systems, are more complex and require expert operators. We will therefore focus on the use of MALDI-... [Pg.227]

Figure 6 The SELDI technology. This type of proteomic analytical tool is a class of mass spectroscopy instrument that is useful in high-throughput proteomic fingerprinting of serum. Using a robotic sample dispenser, 1 p,L of serum is applied to the surface of a protein-binding chip. A subset of the proteins in the sample binds to the surface of the chip. The bound proteins are treated with a matrix-assisted laser desorption and ionization matrix and are washed and dried. The chip, which contains multiple patient samples, is inserted into a vacuum chamber where it is irradiated with a laser. The laser desorbs the adherent proteins and causes them to be launched as ions. The TOF of the ion before detection by an electrode is a measure of the mass-to-charge (m/z) value of the ion. The ion spectra can be analyzed by computer-assisted tools that classify a subset of the spectra by characteristic patterns of relative intensity (adapted from www.evmsdoctors.com). Figure 6 The SELDI technology. This type of proteomic analytical tool is a class of mass spectroscopy instrument that is useful in high-throughput proteomic fingerprinting of serum. Using a robotic sample dispenser, 1 p,L of serum is applied to the surface of a protein-binding chip. A subset of the proteins in the sample binds to the surface of the chip. The bound proteins are treated with a matrix-assisted laser desorption and ionization matrix and are washed and dried. The chip, which contains multiple patient samples, is inserted into a vacuum chamber where it is irradiated with a laser. The laser desorbs the adherent proteins and causes them to be launched as ions. The TOF of the ion before detection by an electrode is a measure of the mass-to-charge (m/z) value of the ion. The ion spectra can be analyzed by computer-assisted tools that classify a subset of the spectra by characteristic patterns of relative intensity (adapted from www.evmsdoctors.com).
Because of expected electrical, electrochemical, optical, chemo-sensor, and other properties of the ball-type Pcs, several metallo and metal-free ball-type Pcs with different linkers have been reported. Metallo and metal free ball-type Pcs containing four calyx[4]arene units as linkers have been synthesized, Fig. 1 [37], The structures of compounds 1-3 were confirmed by UV-vis, IR, 1II-NMR, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), and elemental analysis. Because of their unique structure and versatile complexation properties [38], calixarenes were found to be one type of interesting compounds to be incorporated into Pc. The cone conformation of the t-butylcalix[4]arene direct... [Pg.107]

B.L.M. van Baar, A.G. Hulst, A.L. de Jong and E.R.J. Wils, Characterisation of botulinum toxins type A and B, by matrix-assisted laser desorption ionisation and electrospray mass spectrometry, 7. Chromatogr., A, 970, 95-115 (2002). [Pg.319]

These direct ion sources exist under two types liquid-phase ion sources and solid-state ion sources. In liquid-phase ion sources the analyte is in solution. This solution is introduced, by nebulization, as droplets into the source where ions are produced at atmospheric pressure and focused into the mass spectrometer through some vacuum pumping stages. Electrospray, atmospheric pressure chemical ionization and atmospheric pressure photoionization sources correspond to this type. In solid-state ion sources, the analyte is in an involatile deposit. It is obtained by various preparation methods which frequently involve the introduction of a matrix that can be either a solid or a viscous fluid. This deposit is then irradiated by energetic particles or photons that desorb ions near the surface of the deposit. These ions can be extracted by an electric field and focused towards the analyser. Matrix-assisted laser desorption, secondary ion mass spectrometry, plasma desorption and field desorption sources all use this strategy to produce ions. Fast atom bombardment uses an involatile liquid matrix. [Pg.15]

M. K. Fatema, H. Nonami, D. R. B. Ducatti, A. G. Gonqalves, M. E. R. Duarte, M. D. Noseda, A. S. Cerezo, R. Erra-Balsells, and M. C. Matulewicz, Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry analysis of oligosaccharides and oligosaccharide alditols obtained by hydrolysis of agaroses and carrageenans, two important types of red seaweed polysaccharides, Carbohydr. Res., 345 (2010) 275-283. [Pg.190]


See other pages where Lasers, types matrix-assisted laser desorption is mentioned: [Pg.468]    [Pg.705]    [Pg.427]    [Pg.173]    [Pg.167]    [Pg.333]    [Pg.1]    [Pg.403]    [Pg.269]    [Pg.482]    [Pg.43]    [Pg.149]    [Pg.444]    [Pg.769]    [Pg.73]    [Pg.267]    [Pg.337]    [Pg.260]    [Pg.343]    [Pg.444]    [Pg.153]    [Pg.92]    [Pg.176]    [Pg.411]    [Pg.34]    [Pg.148]    [Pg.728]    [Pg.138]   


SEARCH



Assisted Laser Desorption

Laser assisted

Laser desorption

Lasers types

Matrix assisted

Matrix-assisted laser

Matrix-assisted laser-desorption

© 2024 chempedia.info