Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

MALDI laser types

For solids, there is now a very wide range of inlet and ionization opportunities, so most types of solids can be examined, either neat or in solution. However, the inlet/ionization methods are often not simply interchangeable, even if they use the same mass analyzer. Thus a direct-insertion probe will normally be used with El or Cl (and desorption chemical ionization, DCl) methods of ionization. An LC is used with ES or APCI for solutions, and nebulizers can be used with plasma torches for other solutions. MALDI or laser ablation are used for direct analysis of solids. [Pg.280]

When mass spectrometry was first used as a routine analytical tool, El was the only commercial ion source. As needs have increased, more ionization methods have appeared. Many different types of ionization source have been described, and several of these have been produced commercially. The present situation is such that there is now only a limited range of ion sources. For vacuum ion sources, El is still widely used, frequently in conjunction with Cl. For atmospheric pressure ion sources, the most frequently used are ES, APCI, MALDI (lasers), and plasma torches. [Pg.282]

It is therefore not surprising that the interest in PyMS as a typing tool diminished at the turn of the twenty-first century and hence why taxonomists have turned to MS-based methods that use soft ionization methods such as electrospray ionization (ESI-MS) and matrix-assisted laser desorption ionization (MALDI MS). These methods generate information-rich spectra of metabolites and proteins, and because the molecular ion is seen, the potential for biomarker discovery is being realized. The analyses of ESI-MS and MALDI-MS data will still need chemometric methods, and it is hoped that researchers in these areas can look back and learn from the many PyMS studies where machine learning was absolutely necessary to turn the complex pyrolysis MS data into knowledge of bacterial identities. [Pg.334]

Other types of atmospheric pressure ionisation detectors are available including APPI (photon ionisation) and MALDI (matrix-assisted laser desorption ionisation). More conventional detection systems for LC include UV absorption, fluorescence and evaporative light scattering. Developments in column packings,... [Pg.570]

Also for MALDI, there is a special case worth mentioning. Surface-enhanced laser desorption/ionization (SELDI) is a technique that utilizes special sample plates [196, 197]. These have different modified surfaces, for example, hydrophobic, anionic, or antibody treated. Which type of surface to select depends on the application. After application of analyte the surface is washed according to a protocol leaving only the desired components on the target. Finally, a MALDI matrix is applied before analysis in the spectrometer. See Chapter 12 for an application example of SELDI. [Pg.37]

There are three types of ion production using lasers as vaporization and ionization sources, laser ablation (LA), direct laser vaporization (DLV), and matrix assisted laser desorption ionization (MALDI). [Pg.354]

The development glycopeptide libraries obtained by the split-mix method is severely hampered by the lack of concurrent development of a general, facile separation and characterization technology. Some headway has been made with chemical coding of the libraries, but very few direct methods of analysis exist. One promising method that could be applied to the direct characterization of both types of libraries is mass spectrometry. More specifically, post-source-decay matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (PSD-MALDI-TOF-MS) and CID-FAB/MS/MS have been used to characterize glycopeptides.53-55... [Pg.290]

While fast atom bombardment (FAB) [66] and TSI [25] built up the basis for a substance-specific analysis of the low-volatile surfactants within the late 1980s and early 1990s, these techniques nowadays have been replaced successfully by the API methods [22], ESI and APCI, and matrix assisted laser desorption ionisation (MALDI). In the analyses of anionic surfactants, the negative ionisation mode can be applied in FIA-MS and LC-MS providing a more selective determination for these types of compounds than other analytical approaches. Application of positive ionisation to anionics of ethoxylate type compounds led to the abstraction of the anionic moiety in the molecule while the alkyl or alkylaryl ethoxylate moiety is ionised in the form of AE or APEO ions. Identification of most anionic surfactants by MS-MS was observed to be more complicated than the identification of non-ionic surfactants. Product ion spectra often suffer from a reduced number of negative product ions and, in addition, product ions that are observed are less characteristic than positively generated product ions of non-ionics. The most important obstacle in the identification and quantification of surfactants and their metabolites, however, is the lack of commercially available standards. The problems with identification will be aggravated by an absence of universally applicable product ion libraries. [Pg.376]

Recent advances in mass spectrometry (MS) technology have provided researchers with an unparalleled ability to identify the types and patterns of secondary biochemical modifications found on proteins in living cells. Matrix-assisted laser desorption/ionization-MS (MALDI-MS) analyses have shown, for example, that HMGA proteins in vivo are simultaneously subject to complex patterns of phosphorylation, acetylation and methylation and that, within the same cell type, different isoforms of these proteins can exhibit quite different modification patterns [33]. Furthermore, these in vivo modifications have been demonstrated to markedly alter the binding affinity of HMGA proteins for both DNA and chromatin substrates in vitro [33]. Nevertheless, due to their number and complexity, it has been difficult to determine the actual biological function(s) played by these biochemical modifications in living cells. [Pg.161]

MALDI-TOFF stands for matrix-assisted laser desorption ionization time of flight. MALDI refers to the source of ionization whereas TOF indicates type of the mass analyzer. [Pg.107]

In 1974, Comarisov and Marshall60 developed Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). This technique allows mass spectrometric measurements at ultrahigh mass resolution (R = 100000-1000000), which is higher than that of any other type of mass spectrometer and has the highest mass accuracy at attomole detection limits. FTICR-MS is applied today together with soft ionization techniques, such as nano ESI (electrospray ionization) or MALDI (matrix assisted laser/desorption ionization) sources. [Pg.21]

Mass spectrometers are used not only to detect the masses of proteins and peptides, but also to identify the proteins, to compare patterns of proteins and peptides, and to scan tissue sections for specific masses. MS is able to do this by giving the mass-to-charge ratio of an ionized species as well as its relative abundance. For biological sample analysis, mass spectrometers are connected to an ionizing source, which is usually matrix-assisted laser desorption ionization (MALDI) [14], surface-enhanced laser desorption/ioni-zation (SELDI, a modified form of MALDI) [15], or electrospray ionization [16]. These interfaces enable the transfer of the peptides or proteins from the solid or liquid phase, respectively, to the gas (vacuum) phase inside the mass spectrometer. Both MALDI and electrospray ionization can be connected to different types of mass analyzers, such as quadrupole, quadruple-ion-traps, time of flight (TOF), or hybrid instruments such as quadrupole-TOF or Fourier transform-ion cyclotron resonance. Each of these instruments can... [Pg.163]

Developments in mass spectrometry technology, together with the availability of extensive DNA and protein sequence databases and software tools for data mining, has made possible rapid and sensitive mass spectrometry-based procedures for protein identification. Two basic types of mass spectrometers are commonly used for this purpose Matrix-assisted laser desorption/ionization (MALDI)-time-of-flight (TOF) mass spectrometry (MS) and electrospray ionization (ESI)-MS. MALDI-TOF instruments are now quite common in biochemistry laboratories and are very simple to use, requiring no special training. ESI instruments, usually coupled to capillary/nanoLC systems, are more complex and require expert operators. We will therefore focus on the use of MALDI-... [Pg.227]


See other pages where MALDI laser types is mentioned: [Pg.280]    [Pg.427]    [Pg.50]    [Pg.153]    [Pg.265]    [Pg.12]    [Pg.1029]    [Pg.261]    [Pg.384]    [Pg.705]    [Pg.375]    [Pg.383]    [Pg.173]    [Pg.167]    [Pg.333]    [Pg.35]    [Pg.403]    [Pg.269]    [Pg.482]    [Pg.43]    [Pg.149]    [Pg.444]    [Pg.190]    [Pg.769]    [Pg.73]    [Pg.70]    [Pg.267]    [Pg.883]    [Pg.884]    [Pg.337]    [Pg.260]    [Pg.343]    [Pg.444]    [Pg.444]   
See also in sourсe #XX -- [ Pg.33 ]




SEARCH



Lasers MALDI

Lasers types

MALDI

© 2024 chempedia.info