Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Laser pulse absorption

T-Jumps can also be produced by microwave heating and by laser pulse absorption. These methods remove the restriction to low-resistance solvents any solvent capable of absorbing energy of the applied frequency may be used. The heating time can be extremely short with laser heating. ... [Pg.144]

The transient T-T absorption in the gas phase has been measured recently for aromatic molecules such as naphthalene (119,211) and anthracene (80,81) using flash kinetic spectroscopy and tandem laser pulse absorption techniques. Particularly, the later technique (211) provides time-dependent absorption spectra of the "isolated" unrelaxed triplet molecules because of its capability for rapid monochromatic excitation and detection. It will certainly provide a wealth of Important kinetic and spectroscopic information about the evolution and decay of triplet states. Direct observation of the formation of transient hot ground-state (Sq) molecules through an internal conversion process has also been achieved with laser excitation and laser... [Pg.11]

Lagtime, 75 Laplace transform, 82 Larmor precessional frequency, 155, 165 Laser pulse absorption, 144 Lattice energy, 403 Law of mass action, 60, 125 Least-squares analysis linear, 41 nonlinear, 49 univariate, 44 unweighted, 44, 51 weighted, 46, 51, 247 Leaving group, 9, 340, 349, 357 Lennard-Jones potential, 393 Lewis acid-base adduct, 425 Lewis acid catalysis, 265 Lewis acidity, 426... [Pg.245]

The morphology of the surface topography depends on the laser processing parameters in addition to the material properties. It is noteworthy that all structures are formed on the surfaces long after the laser pulse absorption has taken place. [Pg.90]

At still shorter time scales other techniques can be used to detenuiue excited-state lifetimes, but perhaps not as precisely. Streak cameras can be used to measure faster changes in light intensity. Probably the most iisellil teclmiques are pump-probe methods where one intense laser pulse is used to excite a sample and a weaker pulse, delayed by a known amount of time, is used to probe changes in absorption or other properties caused by the excitation. At short time scales the delay is readily adjusted by varying the path length travelled by the beams, letting the speed of light set the delay. [Pg.1124]

The experiments were perfonued in a static reaction cell in a large excess of N2 (2-200 bar). An UV laser pulse (193 mu, 20 ns) started the reaction by the photodissociation of N2O to fonu O atoms in the presence of NO. The reaction was monitored via the NO2 absorption at 405 mu using a Hg-Xe high-pressure arc lamp, together with direct time-dependent detection. With a 20-200-fold excess of NO, the fonuation of NO2 followed a pseudo-first-order rate law ... [Pg.2126]

The conmron flash-lamp photolysis and often also laser-flash photolysis are based on photochemical processes that are initiated by the absorption of a photon, hv. The intensity of laser pulses can reach GW cm or even TW cm, where multiphoton processes become important. Figure B2.5.13 simnnarizes the different mechanisms of multiphoton excitation [75, 76, 112], The direct multiphoton absorption of mechanism (i) requires an odd number of photons to reach an excited atomic or molecular level in the case of strict electric dipole and parity selection rules [117],... [Pg.2130]

Figure B2.5.15. Iodine atom fonnation in the IR laser ehemistry of CF I (exeitation at 1074.65 em probe on the F = 4 —> F = 3 hyperfme stnieture transition, see figure B2.5.12.) (a) The absorbanee as a fiinetion of time (effeetive absorption eross seetion frill eiirve, left ordinate) shows elear steps at eaeh maximum of the mode loeked CO2 laser pulse sequenee (intensity, broken eurve, right ordinate), (b) The Ifaetion Fp of dissoeiating moleeules as a frinetion of fluenee F. Figure B2.5.15. Iodine atom fonnation in the IR laser ehemistry of CF I (exeitation at 1074.65 em probe on the F = 4 —> F = 3 hyperfme stnieture transition, see figure B2.5.12.) (a) The absorbanee as a fiinetion of time (effeetive absorption eross seetion frill eiirve, left ordinate) shows elear steps at eaeh maximum of the mode loeked CO2 laser pulse sequenee (intensity, broken eurve, right ordinate), (b) The Ifaetion Fp of dissoeiating moleeules as a frinetion of fluenee F.
A closely related technique useful for localized gas concentrations and leaks is photoacoustic detection and ranging (padar) (90). A laser pulse tuned to an absorption line generates an acoustic signal that is detected by a paraboHc microphone. A range resolution of 1 cm out to 100 m is feasible. [Pg.315]

A promising technique is cavity ringdown laser absorption spectroscopy (307), in which the rate of decay of laser pulses injected into an optical cavity containing the sample is measured. Absorption sensitivities of 5 x 10 have been measured on a ]ls time scale. AppHcations from the uv to the ir... [Pg.321]

A suitable method for a detailed investigation of stimulated emission and competing excited state absorption processes is the technique of transient absorption spectroscopy. Figure 10-2 shows a scheme of this technique. A strong femtosecond laser pulse (pump) is focused onto the sample. A second ultrashort laser pulse (probe) then interrogates the transmission changes due to the photoexcita-lions created by the pump pulse. The signal is recorded as a function of time delay between the two pulses. Therefore the dynamics of excited state absorption as... [Pg.169]

Figure 10-5. Transient transmission changes AV/Po in PPV for different lime delays between the pump and probe pulse. The pump pulse is a 100 fs laser pulse at 325 nm obtained by frequency doubling ol amplified dye laser pulses, (a) and (b) correspond to different sides of a PPV-film. The spectra in (a) were obtained lor the unoxidized side of the sample while the set of spectra in (b) was measured for the oxidized side of the same sample. The main differences observed are a much lower stimulated emission effect for the oxidized side. The two bottom spectra depict the PL-spectra for comparison. The dashed line indicates the optical absorption (according to Kef. (281). Figure 10-5. Transient transmission changes AV/Po in PPV for different lime delays between the pump and probe pulse. The pump pulse is a 100 fs laser pulse at 325 nm obtained by frequency doubling ol amplified dye laser pulses, (a) and (b) correspond to different sides of a PPV-film. The spectra in (a) were obtained lor the unoxidized side of the sample while the set of spectra in (b) was measured for the oxidized side of the same sample. The main differences observed are a much lower stimulated emission effect for the oxidized side. The two bottom spectra depict the PL-spectra for comparison. The dashed line indicates the optical absorption (according to Kef. (281).
Morishima et al. [75, 76] have shown a remarkable effect of the polyelectrolyte surface potential on photoinduced ET in the laser photolysis of APh-x (8) and QPh-x (12) with viologens as electron acceptors. Decay profiles for the SPV (14) radical anion (SPV- ) generated by the photoinduced ET following a 347.1-nm laser excitation were monitored at 602 nm (Fig. 13) [75], For APh-9, the SPV- transient absorption persisted for several hundred microseconds after the laser pulse. The second-order rate constant (kb) for the back ET from SPV- to the oxidized Phen residue (Phen+) was estimated to be 8.7 x 107 M 1 s-1 for the APh-9-SPV system. For the monomer model system (AM(15)-SPV), on the other hand, kb was 2.8 x 109 M-1 s-1. This marked retardation of the back ET in the APh-9-SPV system is attributed to the electrostatic repulsion of SPV- by the electric field on the molecular surface of APh-9. The addition of NaCl decreases the electrostatic interaction. In fact, it increased the back ET rate. For example, at NaCl concentrations of 0.025 and 0.2 M, the value of kb increased to 2.5 x 108 and... [Pg.77]

Excitation of an aqueous solution of poly(A/St/Phen) with a 355-nm, 22-ps laser pulse in the presence of MV2+ generated a transient absorption band peaking at about 600 nm due to MV + [120]. As shown in Fig. 16, the buildup of the 600-nm band completes immediately after the pulse excitation, indicating that the photoinduced ET from the singlet-excited Phen residue ( Phen ) to MV2 + occurs on a time scale comparable to or shorter than the duration of the laser pulse (ca. 22 ps) [120], Figure 16 also shows that a fast decay of the absorbance at 600 nm owing to the back ET from MV + to the Phen cation radical (Phen+ )... [Pg.85]

Fig. 16. Time-resolved transient absorption spectra for poly(A/St/Phen) (29) in aqueous solution in the presence of 5 mM MV2 + [Phen] (residue) = 0.66 mM. Delay times after the laser pulse are indicated [102]... Fig. 16. Time-resolved transient absorption spectra for poly(A/St/Phen) (29) in aqueous solution in the presence of 5 mM MV2 + [Phen] (residue) = 0.66 mM. Delay times after the laser pulse are indicated [102]...
When Ss solutions in cyclopentane (1 mmol 1 ) were irradiated by 308 nm laser pulses four novel absorption bands at 325, 400, 530, and 640 nm appeared [50]. The absorptions assigned to S3 (400 nm) and S4 (530 nm) decayed within microseconds. The other two peaks also disappeared very rapidly but their origin remained unexplained in 1985. However, it is now evident that the 640 nm absorption is due to the presence of the C2h isomer of S4. Evidently, Ss decomposes by the following reactions ... [Pg.40]

Figure lb shows the transient absorption spectra of RF (i.e. the difference between the ground singlet and excited triplet states) obtained by laser-flash photolysis using a Nd Yag pulsed laser operating at 355 nm (10 ns pulse width) as excitation source. At short times after the laser pulse, the transient spectrum shows the characteristic absorption of the lowest vibrational triplet state transitions (0 <— 0) and (1 <— 0) at approximately 715 and 660 nm, respectively. In the absence of GA, the initial triplet state decays with a lifetime around 27 ps in deoxygenated solutions by dismutation reaction to form semi oxidized and semi reduced forms with characteristic absorption bands at 360 nm and 500-600 nm and (Melo et al., 1999). However, in the presence of GA, the SRF is efficiently quenched by the gum with a bimolecular rate constant = 1.6x10 M-is-i calculated... [Pg.13]

Fig. 2. a) Transient absorption spectra of RF (35 pM) in N2-saturated MeOH-Water (1 1) solution observed after 60 ps of the laser pulse as a function of the concentration of GA. b) Effect of dissolved molecular oxygen ( 2) on the decay of the 3RF at 700 nm. Inset Stern-Volmer plot for the quenching of 3RF by 3O2. [Pg.14]

In addition, a 532 (visible) or 355 (UV region) nm laser-induced photoisomerization of allylic alcohols to aldehydes catalyzed by [Fe3(CO)i2] or [Fe(CO)4PPh3] was developed by Fan [176]. In this reaction, key intermediates such as the 7i-allyl hydride species [FeH(CO)3(q -C3H3ROH)] (R = H, Me) were detected by pulsed laser FTIR absorption spectroscopy. These results strongly support the 7i-allyl mechanism of photoisomerization of allyl alcohols. [Pg.63]

Time-resolved X-ray absorption is a very different class of experiments [5-7]. Chemical reactions are triggered by an ultrafast laser pulse, but the laser-induced change in geometry is observed by absorption rather than diffraction. This technique permits one to monitor local rather than global changes in the system. What one measures in practice is the extended X-ray absorption fine structure (EXAFS), and the X-ray extended nearedge strucmre (XANES). [Pg.273]

Figure 1.3. Real-time femtosecond spectroscopy of molecules can be described in terms of optical transitions excited by ultrafast laser pulses between potential energy curves which indicate how different energy states of a molecule vary with interatomic distances. The example shown here is for the dissociation of iodine bromide (IBr). An initial pump laser excites a vertical transition from the potential curve of the lowest (ground) electronic state Vg to an excited state Vj. The fragmentation of IBr to form I + Br is described by quantum theory in terms of a wavepacket which either oscillates between the extremes of or crosses over onto the steeply repulsive potential V[ leading to dissociation, as indicated by the two arrows. These motions are monitored in the time domain by simultaneous absorption of two probe-pulse photons which, in this case, ionise the dissociating molecule. Figure 1.3. Real-time femtosecond spectroscopy of molecules can be described in terms of optical transitions excited by ultrafast laser pulses between potential energy curves which indicate how different energy states of a molecule vary with interatomic distances. The example shown here is for the dissociation of iodine bromide (IBr). An initial pump laser excites a vertical transition from the potential curve of the lowest (ground) electronic state Vg to an excited state Vj. The fragmentation of IBr to form I + Br is described by quantum theory in terms of a wavepacket which either oscillates between the extremes of or crosses over onto the steeply repulsive potential V[ leading to dissociation, as indicated by the two arrows. These motions are monitored in the time domain by simultaneous absorption of two probe-pulse photons which, in this case, ionise the dissociating molecule.
Photoinduced oxidation of 1,4-dimethoxybenzene (DMB) and tetrahydrofuran (THF) by [Au(C N N-dpp)Cl]+ in acetonitrile upon UV/Vis irradiation have been observed. The time-resolved absorption spectrum recorded 12 (xs after excitation of [Au(C N N-dpp)Cl] with a laser pulse at 35 5 nm showed the absorption band of the DMB radical cation at 460nm, whereas upon excitation at 406 nm in the presence of THF, a broad emission characteristic of the protonated salt of 2,9-diphenyl-l,10-phenanthroline (Hdpp ) developed at 500 nm. [Pg.271]

First we consider the electronic excitation probability Pekc for a single molecule during a single laser pulse. When a molecule has the absorption coefficient Eabs(dm mol cm ), its absorption cross section Gabs is given by 3.81 x lO Sabs cm molecule". Since the probability Peiec is proportional to the light intensity (photons s cm ) under the objective lens, it is given by... [Pg.14]

The bleaching of carotenoids was simultaneous with the formation of near-infrared absorbing intermediates in the microsecond timescale. The formation of an adduct ion-pair is instantaneous during the laser pulse (<10ns) with maximum absorption in the region 830-950 nm, depending on... [Pg.241]


See other pages where Laser pulse absorption is mentioned: [Pg.178]    [Pg.178]    [Pg.1170]    [Pg.1968]    [Pg.1981]    [Pg.1990]    [Pg.135]    [Pg.284]    [Pg.17]    [Pg.268]    [Pg.213]    [Pg.113]    [Pg.18]    [Pg.92]    [Pg.331]    [Pg.138]    [Pg.158]    [Pg.69]    [Pg.381]    [Pg.128]    [Pg.77]    [Pg.26]    [Pg.170]    [Pg.473]    [Pg.162]   
See also in sourсe #XX -- [ Pg.144 ]




SEARCH



Laser absorption

Laser pulse

Laser-pulsed photolysis, transient absorption

Laser-pulsed photolysis, transient absorption profiles

© 2024 chempedia.info