Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Laminar thickness

Seldon HL. 2006. Cortical laminar thickness and column spacing in human temporal and inferior parietal lobes Intra-individual anatomical relations. Laterality 11(3) 226-250. [Pg.379]

Liquid laminar thickness The thickness of a layer at the air/water interface where transport of a dissolved species is controlled by molecular (rather than turbulent) diffusion. [Pg.481]

Such a blend is intended as a replacement for previous blends of polyamide and polyethylene used in gas tanks and other containers. These older blends were exposed to a mixture of hydrocarbons but now oxygenated solvents (e.g., methanol) have been added which cause an unacceptable reduction of barrier properties. A replacement technology is needed. Improved barrier properties in this design comes from increased crystallinity of the material brought about by controlling laminar thickness of polyethylene crystals and processing material under conditions which favor the crystallization of poly(vinylidene fluoride). [Pg.694]

It is essential for the rotating-disc that the flow remain laminar and, hence, the upper rotational speed of the disc will depend on the Reynolds number and experimental design, which typically is 1000 s or 10,000 rpm. On the lower lunit, 10 s or 100 rpm must be applied in order for the thickness of tlie boundary layer to be comparable to that of the radius of the disc. [Pg.1936]

External Fluid Film Resistance. A particle immersed ia a fluid is always surrounded by a laminar fluid film or boundary layer through which an adsorbiag or desorbiag molecule must diffuse. The thickness of this layer, and therefore the mass transfer resistance, depends on the hydrodynamic conditions. Mass transfer ia packed beds and other common contacting devices has been widely studied. The rate data are normally expressed ia terms of a simple linear rate expression of the form... [Pg.257]

As velocity continues to rise, the thicknesses of the laminar sublayer and buffer layers decrease, almost in inverse proportion to the velocity. The shear stress becomes almost proportional to the momentum flux (pk ) and is only a modest function of fluid viscosity. Heat and mass transfer (qv) to the wall, which formerly were limited by diffusion throughout the pipe, now are limited mostly by the thin layers at the wall. Both the heat- and mass-transfer rates are increased by the onset of turbulence and continue to rise almost in proportion to the velocity. [Pg.90]

The phenomenon of concentration polarization, which is observed frequently in membrane separation processes, can be described in mathematical terms, as shown in Figure 30 (71). The usual model, which is weU founded in fluid hydrodynamics, assumes the bulk solution to be turbulent, but adjacent to the membrane surface there exists a stagnant laminar boundary layer of thickness (5) typically 50—200 p.m, in which there is no turbulent mixing. The concentration of the macromolecules in the bulk solution concentration is c,. and the concentration of macromolecules at the membrane surface is c. [Pg.78]

For pipelines in service in chemical plants, it is not usually convenient to place a radiation source inside the pipe and position it to irradiate each welded joint. The radioisotope source container maybe placed on the outer surface of the pipe. The radiation beams then pass through two pipe wall thicknesses to expose films placed diametrically opposite the radiation source, also on the outside of the pipe wall. Other methods, such as magnetic particle inspection of welds in steel pipe, or ultrasonic inspection of welds in pipes of all materials, supplement x-rays in many critical appHcations. The ultrasonic tests can often detect the thin, laminar discontinuities parallel to the pipe surface or the incomplete fusion discontinuities along the weld... [Pg.129]

Thickness of the laminar layer is deterrnined both by the need to reproduce fine detail in the object and by the penetration depth of the actinic laser light into the monomer bath (21,76). There is thus a trade-off between precision of detail in the model and time required for stereohthography, ie, the number of layers that have to be written, and an optimum Light-absorbing initiator concentration in the monomer bath corresponding to the chosen layer thickness. Titanocene-based initiators, eg, bis-perfluorophenyltitanocene has been recommended for this apphcation (77). Mechanistic aspects of the photochemistry of titanocenes and mechanisms of photoinitiation have been reviewed (76). [Pg.393]

Fig. 1. Laminar flow in simple shear. FjA — rjdV/dX, where F is the force acting on areaM, H the velocity and X the thickness of the layer, and Tj the... Fig. 1. Laminar flow in simple shear. FjA — rjdV/dX, where F is the force acting on areaM, H the velocity and X the thickness of the layer, and Tj the...
Chlorination of thick lime slurry at 40—45°C forms large crystals of hemibasic calcium hypochlorite. The fine crystals obtained under 30°C are difficult to filter and since they invariably contain occluded mother Hquor, they have frequently been incorrectly referred to as monobasic or two-thirds basic (187,188). The isolated hemibasic crystals are suspended in a thin chlorinated lime slurry and chlorinated, producing laminar crystals of Ca(OCl)2 2H20, which are filtered and dried. Mother Hquors are treated with a lime slurry to recover the dibasic crystals, which are then suspended in a Hquor of lower CaCl2 content and chlorinated to form the neutral salt (188—190). [Pg.470]

For turbulent flow of a fluid past a solid, it has long been known that, in the immediate neighborhood of the surface, there exists a relatively quiet zone of fluid, commonly called the Him. As one approaches the wall from the body of the flowing fluid, the flow tends to become less turbulent and develops into laminar flow immediately adjacent to the wall. The film consists of that portion of the flow which is essentially in laminar motion (the laminar sublayer) and through which heat is transferred by molecular conduction. The resistance of the laminar layer to heat flow will vaiy according to its thickness and can range from 95 percent of the total resistance for some fluids to about I percent for other fluids (liquid metals). The turbulent core and the buffer layer between the laminar sublayer and turbulent core each offer a resistance to beat transfer which is a function of the turbulence and the thermal properties of the flowing fluid. The relative temperature difference across each of the layers is dependent upon their resistance to heat flow. [Pg.558]

I0-38Z ) is solved to give the temperature distribution from which the heat-transfer coefficient may be determined. The major difficulties in solving Eq. (5-38Z ) are in accurately defining the thickness of the various flow layers (laminar sublayer and buffer layer) and in obtaining a suitable relationship for prediction of the eddy diffusivities. For assistance in predicting eddy diffusivities, see Reichardt (NACA Tech. Memo 1408, 1957) and Strunk and Chao [Am. ln.st. Chem. Eng. J., 10, 269(1964)]. [Pg.560]

Boundary layer flows are a special class of flows in which the flow far from the surface of an object is inviscid, and the effects of viscosity are manifest only in a thin region near the surface where steep velocity gradients occur to satisfy the no-slip condition at the solid surface. The thin layer where the velocity decreases from the inviscid, potential flow velocity to zero (relative velocity) at the sohd surface is called the boundary layer The thickness of the boundary layer is indefinite because the velocity asymptotically approaches the free-stream velocity at the outer edge. The boundaiy layer thickness is conventionally t en to be the distance for which the velocity equals 0.99 times the free-stream velocity. The boundary layer may be either laminar or turbulent. Particularly in the former case, the equations of motion may be simphfied by scaling arguments. Schhchting Boundary Layer Theory, 8th ed., McGraw-HiU, New York, 1987) is the most comprehensive source for information on boundary layer flows. [Pg.666]

However, the transition Reynolds number depends on free-stream turbulence and may range from 3 X 10 to 3 X lO ". The laminar boundary layer thickness 8 is a function of distance from the leading edge ... [Pg.666]

Continuous Flat Surface Boundaiy layers on continuous surfaces drawn through a stagnant fluid are shown in Fig. 6-48. Figure 6-48 7 shows the continuous flat surface (Saldadis, AIChE J., 7, 26—28, 221-225, 467-472 [1961]). The critical Reynolds number for transition to turbulent flow may be greater than the 500,000 value for the finite flat-plate case discussed previously (Tsou, Sparrow, and Kurtz, J. FluidMech., 26,145—161 [1966]). For a laminar boundary layer, the thickness is given by... [Pg.666]

Continuous Cylindrical Surface The continuous surface shown in Fig. 6-48b is apphcable, for example, for a wire drawn through a stagnant fluid (Sakiadis, AIChE ]., 7, 26-28, 221-225, 467-472 [1961]). The critical-length Reynolds number for transition is Re = 200,000. The laminar boundary laver thickness, total drag, and entrainment flow rate may be obtained from Fig. 6-49 the drag and entrainment rate are obtained from the momentum area 0 and displacement area A evaluated at x = L. [Pg.667]

Laminar Flow For films falling down vertical flat surfaces, as shown in Fig. 6-52, or vertical tubes with small film thickness compared to tube radius, laminar flow conditions prevail for Reynolds numbers less than about 2,000, where the Reynolds number is given by... [Pg.668]

Concentration and temperature differences are reduced by bulk flow or circulation in a vessel. Fluid regions of different composition or temperature are reduced in thickness by bulk motion in which velocity gradients exist. This process is called bulk diffusion or Taylor diffusion (Brodkey, in Uhl and Gray, op. cit., vol. 1, p. 48). The turbulent and molecular diffusion reduces the difference between these regions. In laminar flow, Taylor diffusion and molecular diffusion are the mechanisms of concentration- and temperature-difference reduction. [Pg.1629]

Macromixing The phenomenon whereby residence times of clumps are distributed about a mean value. Mixing on a scale greater than the minimum eddy size or minimum striation thickness, by laminar or turbulent motion. [Pg.757]

Striation thickness Average distance between adjacent interfaces of materials to be mixed by a laminar mechanism. [Pg.759]

The mechanism of flame propagation into a stagnant fuel-air mixture is determined largely by conduction and molecular diffusion of heat and species. Figure 3.1 shows the change in temperature across a laminar flame, whose thickness is on the order of one millimeter. [Pg.50]

Such effects principally cannot be observed in multi band detectors such as a UV diode array detector or a Fourier transform infrared (FTIR) detector because all wavelengths are measured under the same geometry. For all other types of detectors, in principle, it is not possible to totally remove these effects of the laminar flow. Experiments and theoretical calculations show (8) that these disturbances can only be diminished by lowering the concentration gradient per volume unit in the effluent, which means that larger column diameters are essential for multiple detection or that narrow-bore columns are unsuitable for detector combinations. Disregarding these limitations can lead to serious misinterpretations of GPC results of multiple detector measurements. Such effects are a justification for thick columns of 8-10 mm diameter. [Pg.441]

This form of attack, especially as affecting copper alloys in sea water, has been widely studied since the pioneer work of Bengough and May . Impingement attack of sea water pipe and heat exchanger systems is considered in Sections 1.6 and 4.2. In such engineering systems the water flow is invariably turbulent and the thickness of the laminar boundary layer is an important factor in controlling localised corrosion. [Pg.374]

Under higher waterside pressure conditions, consideration of bulk water turbulent flow, the thickness of the steam-water laminar flow sublayer film at the heat transfer surface, and the general waterside physicochemical operating conditions that exist are important issues in reviewing the potential risks of deposition, corrosion, and other problems that may occur within an operating boiler. [Pg.143]

When a fluid flowing at a uniform velocity enters a pipe, the layers of fluid adjacent to the walls are slowed down as they are on a plane surface and a boundary layer forms at the entrance. This builds up in thickness as the fluid passes into the pipe. At some distance downstream from the entrance, the boundary layer thickness equals the pipe radius, after which conditions remain constant and fully developed flow exists. If the flow in the boundary layers is streamline where they meet, laminar flow exists in the pipe. If the transition has already taken place before they meet, turbulent flow will persist in the... [Pg.61]

This relation holds provided that the one-seventh power law may be assumed to apply over the whole of the cross-section of the pipe. This is strictly the case only at high Reynolds numbers when the thickness of the laminar sub-layer is small. By combining equations 3.59 and 3.63, the velocity profile is given by ... [Pg.84]

Thus for turbulent flow at high Reynolds numbers, where the thickness of the laminar sub-layer may be neglected, a 1. [Pg.85]

In laminar flow, a similar mixing process occurs when the liquid is sheared between two rotating cylinders. During each revolution, the thickness of the fluid element is reduced, and molecular diffusion takes over when the elements are sufficiently thin. This type of mixing is shown schematically in Figure 7.3 in which the tracer is pictured as being introduced perpendicular to the direction of motion. [Pg.278]


See other pages where Laminar thickness is mentioned: [Pg.244]    [Pg.737]    [Pg.244]    [Pg.737]    [Pg.92]    [Pg.92]    [Pg.429]    [Pg.129]    [Pg.393]    [Pg.514]    [Pg.399]    [Pg.272]    [Pg.518]    [Pg.518]    [Pg.524]    [Pg.10]    [Pg.111]    [Pg.207]   
See also in sourсe #XX -- [ Pg.709 ]

See also in sourсe #XX -- [ Pg.694 ]

See also in sourсe #XX -- [ Pg.694 ]

See also in sourсe #XX -- [ Pg.694 ]

See also in sourсe #XX -- [ Pg.737 ]




SEARCH



© 2024 chempedia.info