Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lactic acid, additive

Wheat dough rheology and bread quality effected by Lactobacillus brevis preferment, dry sourdough and lactic acid addition. International journal of food science technology. 45, pp. 1417-1425... [Pg.289]

In addition to alcohoHc fermentation, a malolactic fermentation by certain desirable strains of lactic acid bacteria needs to be considered. Occasionally, wild strains produce off-flavors. Malolactic fermentation is desirable in many red table wines for increased stabiUty, more complex flavor, and sometimes for decreased acidity. Selected strains are often added toward the end of alcohoHc fermentation. AH the malic acid present is converted into lactic acid, with the resultant decrease of acidity and Hberation of carbon dioxide. Obviously this has more effect on the acidity the more malic acid is present, and this is the case in wine from underripe, too-tart grapes. Once malolactic fermentation has occurred, it does not recur unless another susceptible wine is blended. [Pg.373]

Lactic Acid B cteri. The lactic acid bacteria are ubiquitous in nature from plant surfaces to gastrointestinal tracts of many animals. These gram-positive facultative anaerobes convert carbohydrates (qv) to lactic acid and are used extensively in the food industry, for example, for the production of yogurt, cheese, sour dough bread, etc. The sour aromatic flavor imparted upon fermentation appears to be a desirable food trait. In addition, certain species produce a variety of antibiotics. [Pg.249]

Other blends such as polyhydroxyalkanoates (PHA) with cellulose acetate (208), PHA with polycaprolactone (209), poly(lactic acid) with poly(ethylene glycol) (210), chitosan and cellulose (211), poly(lactic acid) with inorganic fillers (212), and PHA and aUphatic polyesters with inorganics (213) are receiving attention. The different blending compositions seem to be limited only by the number of polymers available and the compatibiUty of the components. The latter blends, with all natural or biodegradable components, appear to afford the best approach for future research as property balance and biodegradabihty is attempted. Starch and additives have been evaluated ia detail from the perspective of stmcture and compatibiUty with starch (214). [Pg.482]

Eusarium monilijorme etc M. ammoniaphilum Arghydroxamate addition of lactic acid is effective 60... [Pg.288]

Polylactic acid, also known as polylactide, is prepared from the cycHc diester of lactic acid (lactide) by ring-opening addition polymerization, as shown below ... [Pg.190]

Addition of acetic or mineral acid to skimmed milk to reduce the pH value to 4.6, the isoelectric point, will cause the casein to precipitate. As calcium salts have a buffer action on the pH, somewhat more than the theoretical amount of acid must be used. Lactic acid produced in the process of milk souring by fermentation of the lactoses present by the bacterium Streptococcus lactis will lead to a similar precipitation. [Pg.855]

Polyester chemistry is the same as studied by Carothers long ago, but polyester synthesis is still a very active field. New polymers have been very recently or will be soon commercially introduced PTT for fiber applications poly(ethylene naph-thalate) (PEN) for packaging and fiber applications and poly(lactic acid) (PLA), a biopolymer synthesized from renewable resources (corn syrup) introduced by Dow-Cargill for large-scale applications in textile industry and solid-state molding resins. Polyesters with unusual hyperbranched architecture also recently appeared and are claimed to find applications as crosstinkers, surfactants, or processing additives. [Pg.20]

Simple 1,2,4-triazole derivatives played a key role in both the synthesis of functionalized triazoles and in asymmetric synthesis. l-(a-Aminomethyl)-1,2,4-triazoles 4 could be converted into 5 by treatment with enol ethers <96SC357>. The novel C2-symmetric triazole-containing chiral auxiliary (S,S)-4-amino-3,5-bis(l-hydroxyethyl)-l,2,4-triazole, SAT, (6) was prepared firmn (S)-lactic acid and hydrazine hydrate <96TA1621>. This chiral auxiliary was employed to mediate the diastereoselective 1,2-addition of Grignard reagents to the C=N bond of hydrazones. The diastereoselective-alkylation of enolates derived from ethyl ester 7 was mediated by a related auxiliary <96TA1631>. [Pg.162]

The racemic poly(DL-lactide) DL-PLA is less crystalline and lower uelting than the two stereoregular polymers, D-PLA and L-PLA. Further, the copolymers of lactide and glycolide are less crystalline than the two homopolymers of the two monomers. In addition, the lactic acid polymer, because of the methyl group, is more hydrophobic than the glycolide polymer. [Pg.3]

Lactic acid oligomer microspheres containing aclarubicin have been studied for selective lymphatic delivery. Low (less than 10,000 molecular weight oligomers were used to produce microspheres designed to release drug over a 30-day period (99). Additives have been used to alter the release rate of aclarubicin-loaded poly(lactide) microspheres (100). Mitomycin C was incorporated into poly(lactic... [Pg.21]

In summary, preliminary results from two animal models (rabbit and mouse) indicate that poly(N-palmitoylhydroxyproline ester) elicits a very mild, local tissue response that compares favorably with the responses observed for established biomaterials such as medical grade stainless steel or poly(lactic acid)/poly(glycolic acid) implants. At this point, additional assays need to be performed to evaluate possible allergic responses, as well as systemic toxic effects, carcinogenic, teratogenic, or mutagenic activity, and adaptive responses. [Pg.210]

APA from penicillin G, 7-ACA from cephalosporin C, 7-ADCA from desaacetoxy cephalosporin G Biotransformation in steroids, e.g. cortexolone to hydrocortisone and prednisolone Food additives Lactic Acid (now a bulk chemical for making polylactate). Citric acid, L-Glutamate, L-Lysine, etc. Vitamines C, B2, B12 Acarbose (antidiabetic drug)... [Pg.158]

Complexes of tetravalent zirconium with organic acids, such as citric, tartaric, malic, and lactic acids, and a complex of aluminum and citric acid have been claimed to be active as dispersants. The dispersant is especially useful in dispersing bentonite suspensions [288]. Polymers with amine sulfide terminal moieties are synthesized by using aminethiols as chain transfer agents in aqueous addition polymerizations. The polymers are useful as mineral dispersants [1182]. [Pg.24]

In addition to solvent uses, esters of lactic acid can be used to recover pure lactic acid via hydrolysis, which in-tum is used to make optically active dilactide and subsequently polylactic acid used for drag delivery system.5 This method of recovery for certain lactic acid applications is critical in synthesis of medicinal grade polymer because only optically active polymers with low Tg are useful for drug delivery systems. Lactic acid esters themselves can also be directly converted into polymers, (Figure 1), although the commercial route proceeds via ring-opening polymerization of dilactide. [Pg.374]


See other pages where Lactic acid, additive is mentioned: [Pg.227]    [Pg.227]    [Pg.233]    [Pg.449]    [Pg.157]    [Pg.177]    [Pg.180]    [Pg.460]    [Pg.249]    [Pg.513]    [Pg.515]    [Pg.515]    [Pg.73]    [Pg.392]    [Pg.18]    [Pg.85]    [Pg.459]    [Pg.300]    [Pg.103]    [Pg.121]    [Pg.93]    [Pg.420]    [Pg.296]    [Pg.510]    [Pg.7]    [Pg.506]    [Pg.173]    [Pg.9]    [Pg.28]    [Pg.19]    [Pg.162]    [Pg.308]    [Pg.313]    [Pg.167]    [Pg.45]   
See also in sourсe #XX -- [ Pg.448 , Pg.448 ]




SEARCH



© 2024 chempedia.info