Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Krypton, and

Another indication of the probable incorrectness of the pressure melting explanation is that the variation of the coefficient of friction with temperature for ice is much the same for other solids, such as solid krypton and carbon dioxide [16] and benzophenone and nitrobenzene [4]. In these cases the density of the solid is greater than that of the liquid, so the drop in as the melting point is approached cannot be due to pressure melting. [Pg.439]

Fender B E F and Halsey G D Jr 1962 Second virial coefficients of argon, krypton and argon-krypton mixtures at low temperatures J. Chem. Phys. 36 1881... [Pg.216]

Such isothemis are shown in figure B 1,26.4 for the physical adsorption of krypton and argon on graphitized carbon black at 77 K [13] and are examples of type VI isothemis (figure B 1.26.3 ). Equation (B1.26.7)) further... [Pg.1872]

Naturally occurring krypton contains six stable isotopes. Seventeen other unstable isotopes are now recognized. The spectral lines of krypton are easily produced and some are very sharp. While krypton is generally thought of as a rare gas that normally does not combine with other elements to form compounds, it now appears that the existence of some krypton compounds is established. Krypton difluoride has been prepared in gram quantities and can be made by several methods. A higher fluoride of krypton and a salt of an oxyacid of krypton also have been... [Pg.100]

Similar results with graphitized carbon blacks have been obtained for the heat of adsorption of argon,krypton,and a number of hydrocarbons (Fig. 2.12). In all these cases the heat of adsorption falls to a level only slightly above the molar heat of condensation, in the vicinity of the point where n = n . [Pg.58]

To prevent such release, off gases are treated in Charcoal Delay Systems, which delay the release of xenon and krypton, and other radioactive gases, such as iodine and methyl iodide, until sufficient time has elapsed for the short-Hved radioactivity to decay. The delay time is increased by increasing the mass of adsorbent and by lowering the temperature and humidity for a boiling water reactor (BWR), a typical system containing 211 of activated carbon operated at 255 K, at 500 K dewpoint, and 101 kPa (15 psia) would provide about 42 days holdup for xenon and 1.8 days holdup for krypton (88). Humidity reduction is typically provided by a combination of a cooler-condenser and a molecular sieve adsorbent bed. [Pg.285]

The latest of three ethylene recovery plants was started in 1991. Sasol sold almost 300,000 t of ethylene in 1992. Sasol also produces polypropylene at Secunda from propylene produced at Sasol Two. In 1992 Sasol started constmction of a linear alpha olefin plant at Secunda to be completed in 1994 (40). Initial production is expected to be 100,000 t/yr pentene and hexene. Sasol also has a project under constmction to extract and purify krypton and xenon from the air separation plants at Sasol Two. Other potential new products under consideration at Sasol are acrylonitrile, acetic acid, acetates, and alkylamines. [Pg.168]

Argon-40 [7440-37-1] is created by the decay of potassium-40. The various isotopes of radon, all having short half-Hves, are formed by the radioactive decay of radium, actinium, and thorium. Krypton and xenon are products of uranium and plutonium fission, and appreciable quantities of both are evolved during the reprocessing of spent fuel elements from nuclear reactors (qv) (see Radioactive tracers). [Pg.4]

The physical properties of argon, krypton, and xenon are frequendy selected as standard substances to which the properties of other substances are compared. Examples are the dipole moments, nonspherical shapes, quantum mechanical effects, etc. The principle of corresponding states asserts that the reduced properties of all substances are similar. The reduced properties are dimensionless ratios such as the ratio of a material s temperature to its critical... [Pg.6]

Krypton and Xenon from Huclear Power Plants. Both xenon and krypton are products of the fission of uranium and plutonium. These gases are present in the spent fuel rods from nuclear power plants in the ratio 1 Kr 4 Xe. Recovered krypton contains ca 6% of the radioactive isotope Kr-85, with a 10.7 year half-life, but all radioactive xenon isotopes have short half-Hves. [Pg.11]

Separation of krypton and xenon from spent fuel rods should afford a source of xenon, technical usage of which is continuously growing (84). As of this writing, however, reprocessing of spent fuel rods is a pohtical problem (see Nuclearreactors). Xenon from fission has a larger fraction of the heavier isotopes than xenon from the atmosphere and this may affect its usefulness in some appHcations. [Pg.12]

Commercially pure (< 99.997%) helium is shipped directiy from helium-purification plants located near the natural-gas supply to bulk users and secondary distribution points throughout the world. Commercially pure argon is produced at many large air-separation plants and is transported to bulk users up to several hundred kilometers away by tmck, by railcar, and occasionally by dedicated gas pipeline (see Pipelines). Normally, only cmde grades of neon, krypton, and xenon are produced at air-separation plants. These are shipped to a central purification faciUty from which the pure materials, as well as smaller quantities and special grades of helium and argon, are then distributed. Radon is not distributed commercially. [Pg.12]

The U.S. production of argon is summarized in Table 5. Because argon is a by-product of air separation, its production is ca 1% that of air feed. Total 1988 United States consumption of neon, krypton, and xenon was 36,400, 6,800, and 1,200 m, respectively (88). [Pg.13]

Table 9. Purities of Commercial Neon, Krypton,, and Xenon ... Table 9. Purities of Commercial Neon, Krypton,, and Xenon ...
The main uses for argon are in metallurgical appHcations and in electric lamps. Neon, krypton, and xenon, because of high costs, are limited to specialized uses in research, instmmentation, and electric lamps. There are no significant technical uses for radon. [Pg.14]

The efficiency of a helium—neon laser is improved by substituting helium-3 for helium-4, and its maximum gain curve can be shifted by varying the neon isotopic concentrations (4). More than 80 wavelengths have been reported for pulsed lasers and 24 for continuous-wave lasers using argon, krypton, and xenon lasing media (111) (see Lasers). [Pg.15]

Off-Gas Treatment. Before the advent of the shear, the gases released from the spent fuel were mixed with the entire dissolver off-gas flow. Newer shear designs contain the fission gases and provide the opportunity for more efficient treatment. The gaseous fission products krypton and xenon are chemically inert and are released into the off-gas system as soon as the fuel cladding is breached. Efficient recovery of these isotopes requires capture at the point of release, before dilution with large quantities of air. Two processes have been developed, a cryogenic distillation and a Freon absorption. [Pg.206]

Adsorption of Radionuclides. Other appHcations that depend on physical adsorption include the control of krypton and xenon radionuchdes from nuclear power plants (92). The gases are not captured entirely, but their passage is delayed long enough to allow radioactive decay of the short-hved species. Highly rnicroporous coconut-based activated carbon is used for this service. [Pg.535]

Calculated from P T values tabulated in Rabinovich (ed.), Thetmophysical Fropetiies of Neon, Argon, Krypton and Xenon, Standard Press, Moscow, 1976. This book was published in English translation by Hemisphere, New York, 1988 (604 pp.). [Pg.184]

Values extracted and in some cases rounded off from those cited in Rabinovich (ed.), Theimophysical Fropeities of Neon, Argon, Krypton and Xenon, Standards Press, Moscow, 1976. This source contains an exhaustive tabulation of values, v = specific volume, mVkg h = specific enthalpy, kj/kg s = specific entropy, kJ/(kg-K). The notation 6.76.—3 signifies 6.76 x 10 . This book was published in English translation by Hemisphere, New York, 1988 (604 pp.). [Pg.301]


See other pages where Krypton, and is mentioned: [Pg.355]    [Pg.356]    [Pg.357]    [Pg.140]    [Pg.140]    [Pg.81]    [Pg.55]    [Pg.67]    [Pg.773]    [Pg.4]    [Pg.10]    [Pg.10]    [Pg.11]    [Pg.11]    [Pg.11]    [Pg.13]    [Pg.17]    [Pg.25]    [Pg.7]    [Pg.158]    [Pg.394]    [Pg.479]    [Pg.480]    [Pg.480]    [Pg.326]    [Pg.473]   
See also in sourсe #XX -- [ Pg.2 , Pg.225 ]




SEARCH



Compounds of argon, krypton and radon

Compounds of krypton and radon

Krypton

Krypton and xenon

Krypton and xenon from air

Krypton and xenon isotope systematics of arc-related volcanism

Krypton isotopes and their properties

Krypton, Neon, and Xenon

Kryptonates

Noble Gases Argon Ar, Helium He, Krypton Kr, Neon Ne, and Xenon Xe

Recovery of Krypton and Xenon

The Noble Cases Neon, Krypton and Xenon

© 2024 chempedia.info