Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetics natural systems

Syntheses of sterically modified biopolymers can clearly yield insights into the presuppositions and possibilities of biological self-organization processes of biopolymers far beyond general thermodynamic and kinetic descriptions of natural systems. [Pg.345]

Selectivity in FIA is often better than that for conventional methods of analysis. In many cases this is due to the kinetic nature of the measurement process, in which potential interferents may react more slowly than the analyte. Contamination from external sources also is less of a problem since reagents are stored in closed reservoirs and are pumped through a system of transport tubing that, except for waste lines, is closed to the environment. [Pg.658]

There are two principal chemical concepts we will cover that are important for studying the natural environment. The first is thermodynamics, which describes whether a system is at equilibrium or if it can spontaneously change by undergoing chemical reaction. We review the main first principles and extend the discussion to electrochemistry. The second main concept is how fast chemical reactions take place if they start. This study of the rate of chemical change is called chemical kinetics. We examine selected natural systems in which the rate of change helps determine the state of the system. Finally, we briefly go over some natural examples where both thermodynamic and kinetic factors are important. This brief chapter cannot provide the depth of treatment found in a textbook fully devoted to these physical chemical subjects. Those who wish a more detailed discussion of these concepts might turn to one of the following texts Atkins (1994), Levine (1995), Alberty and Silbey (1997). [Pg.85]

In many cases one can apply the first principles of thermodynamics and chemical kinetics to natural systems only with caution. The reason... [Pg.85]

Thus far we have studied thermodynamics and kinetics imder the assumption that the systems of interest are in equilibrium. However, some natural systems have reaction rates so slow that they exist for long periods under non-equilibrium conditions. The formation of nitric oxide serves as an interesting example. [Pg.101]

If a system is not at equilibrium, which is common for natural systems, each reaction has its own Eh value and the observed electrode potential is a mixed potential depending on the kinetics of several reactions. A redox pair with relatively high ion activity and whose electron exchange process is fast tends to dominate the registered Eh. Thus, measurements in a natural environment may not reveal information about all redox reactions but only from those reactions that are active enough to create a measurable potential difference on the electrode surface. [Pg.188]

While these calculations provide information about the ultimate equilibrium conditions, redox reactions are often slow on human time scales, and sometimes even on geological time scales. Furthermore, the reactions in natural systems are complex and may be catalyzed or inhibited by the solids or trace constituents present. There is a dearth of information on the kinetics of redox reactions in such systems, but it is clear that many chemical species commonly found in environmental samples would not be present if equilibrium were attained. Furthermore, the conditions at equilibrium depend on the concentration of other species in the system, many of which are difficult or impossible to determine analytically. Morgan and Stone (1985) reviewed the kinetics of many environmentally important reactions and pointed out that determination of whether an equilibrium model is appropriate in a given situation depends on the relative time constants of the chemical reactions of interest and the physical processes governing the movement of material through the system. This point is discussed in some detail in Section 15.3.8. In the absence of detailed information with which to evaluate these time constants, chemical analysis for metals in each of their oxidation states, rather than equilibrium calculations, must be conducted to evaluate the current state of a system and the biological or geochemical importance of the metals it contains. [Pg.383]

The simultaneous determination of trimeprazine and methotrimeprazine in mixtures using the classical peroxyoxalate system based on the reaction between TCPO and hydrogen peroxide was used to validate the new methodology. The reaction was implemented by using the CAR technique, which increased nonlinearity in the chemical system studied by virtue of its second-order kinetic nature. In addition, both drugs exhibited a similar kinetic behavior and synergistic effects on each other, as can be inferred from the individual and combined (real and theoretical) CL-versus-time response curves. [Pg.205]

The great value of kinetic theory is that it frees us from many of the constraints of the equilibrium model and its variants (partial equilibrium, local equilibrium, and so on see Chapter 2). In early studies (e.g., Lasaga, 1984), geochemists were openly optimistic that the results of laboratory experiments could be applied directly to the study of natural systems. Transferring the laboratory results to field situations, however, has proved to be much more challenging than many first imagined. [Pg.236]

NMR, EPR, EXAFS, infrared, resonance Raman, and ultraviolet-visible spectroscopy should follow. Kinetic and thermodynamic information about the model complexes in comparison to that known for natural systems should be gathered. These concepts were updated in 1999 by Karlin, writing in reference 49. Model studies should provide reasonable bases for hypotheses about a biological structure and its reaction intermediates. Researchers should determine the model s competence in carrying out reactions that mimic metalloprotein chemistry. Using these methods and criteria, researchers may hope to exploit Cu-oxygen systems as practical dioxygen carriers or oxidation catalysts for laboratory and industrial purposes. [Pg.215]

A better insight into the mechanisms of the individual steps in the formation of crystals would be of great help in explaining the creation and transformation of sedimentary deposits and biological precipitates. Valuable reviews are available on the principles of nucleation of crystals and the kinetics of precipitation and crystal growth (Zhang and Nancollas, 1990 Steefel and Van Cappellen, 1990 Van Cappellen, 1991). Only a few important considerations are summarized here to illustrate the wide scope of questions to be answered in order to predict rates and mechanisms of precipitation in natural systems. [Pg.212]

The "classical" theory of nucleation concentrates primarily on calculating the nucleation free energy barrier, AG. Chemical interactions are included under the form of thermodynamic quantities, such as the surface tension. A link with chemistry is made by relating the surface tension to the solubility which provides a kinetic explanation of the Ostwald Step Rule and the often observed disequilibrium conditions in natural systems. Can the chemical model be complemented and expanded by considering specific chemical interactions (surface complex formation) of the components of the cluster with the surface ... [Pg.224]

Interface and colloid science has a very wide scope and depends on many branches of the physical sciences, including thermodynamics, kinetics, electrolyte and electrochemistry, and solid state chemistry. Throughout, this book explores one fundamental mechanism, the interaction of solutes with solid surfaces (adsorption and desorption). This interaction is characterized in terms of the chemical and physical properties of water, the solute, and the sorbent. Two basic processes in the reaction of solutes with natural surfaces are 1) the formation of coordinative bonds (surface complexation), and 2) hydrophobic adsorption, driven by the incompatibility of the nonpolar compounds with water (and not by the attraction of the compounds to the particulate surface). Both processes need to be understood to explain many processes in natural systems and to derive rate laws for geochemical processes. [Pg.436]

Many of the same factors which complicate the interpretation of laboratory kinetic studies are among the most important limitations on the application of laboratory dissolution rate data to natural systems. These include uncertainty about 1) the effective surface area in natural systems (56,57) 2) the extent to which surface area and surface roughness change with reaction progress ( 18) and 3) the magnitude of solution composition effects on rates in natural systems. [Pg.631]

Future improvements in the application of laboratory dissolution data to natural systems will come not (only) from additional work on laboratory kinetics, but will also depend heavily on much more comprehensive studies of surface area distribution, evolution, and accessibility to attack by fluids in natural systems, and by improved understanding of thermodynamic properties of natural fluids. Only in this way will laboratory kinetic data contribute to solving environmental problems such as nuclear waste disposal and evaluating the impact of acid deposition. [Pg.632]

The released U(VI) from the U()2 matrix will continue to be dissolved until saturation with secondary U(VI) solid phases is reached. The observations from both laboratory and natural systems would indicate that the kinetically preferred phase is hydrated schoepite. This will be denoted as U02(0H)2(s) for the sake of description of the model, although the correct notation would be U03-xH20, with x oscillating between 0 and 2. Depending on the presence of carbonates in the contacting solution, the reactions can be described as ... [Pg.523]

For evaluating the reduction kinetics of NACs in a given natural system, the relative reaction rates of a series of NACs with known E]u(ArN02) values can be used to... [Pg.586]

The ability of metal ions to catalyze the hydrolysis of peptide bonds has been known for 50 years, while the catalytic effect on the hydrolysis of amino acid esters was highlighted in the 1950s. As Hay and Morris point out in their review,76 the major problem with the kinetically labile systems is determining the nature of the reactive complex in solution. Such problems generally do not arise in the more inert systems and consequently reactions involving Co111 have been the more popular for study. [Pg.757]


See other pages where Kinetics natural systems is mentioned: [Pg.312]    [Pg.85]    [Pg.145]    [Pg.108]    [Pg.179]    [Pg.22]    [Pg.471]    [Pg.472]    [Pg.472]    [Pg.109]    [Pg.117]    [Pg.11]    [Pg.615]    [Pg.93]    [Pg.217]    [Pg.248]    [Pg.400]    [Pg.93]    [Pg.149]    [Pg.421]    [Pg.199]    [Pg.142]    [Pg.5]    [Pg.179]    [Pg.182]    [Pg.201]    [Pg.205]    [Pg.830]    [Pg.112]   
See also in sourсe #XX -- [ Pg.85 , Pg.96 , Pg.97 , Pg.98 , Pg.99 , Pg.100 , Pg.101 , Pg.102 ]




SEARCH



Kinetic system

Kinetics systems

Natural systems

© 2024 chempedia.info