Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetic studies oxidation

Qin L, Tripathi G N R and Schuler R H 1987 Radiolytic oxidation of 1,2,4-benzenetriol an application of time-resolved resonance Raman spectroscopy to kinetic studies of reaction intermediates J. Chem. Phys. [Pg.1227]

Ochiai and Okamoto showed that nitration of quinoline i-oxide in sulphuric acid at o °C gave 5- and 8-nitroquinoline i-oxides with a trace of the 4-isomer, but that at 60-100 °C 4-nitration became overwhelmingly dominant. The orientation depends not only upon temperature but also upon acidity, and kinetic studies (table 8.4 table 10.3) show that two processes are occurring the nitration of the free base (vil, R = O at C(4), favoured by low acidities and high temperatures, and the nitration of the cation (vil, R = OH), favoured by high acidities and low temperatures. ... [Pg.217]

Extensive studies on the Wacker process have been carried out in industrial laboratories. Also, many papers on mechanistic and kinetic studies have been published[17-22]. Several interesting observations have been made in the oxidation of ethylene. Most important, it has been established that no incorporation of deuterium takes place by the reaction carried out in D2O, indicating that the hydride shift takes place and vinyl alcohol is not an intermediate[l,17]. The reaction is explained by oxypailadation of ethylene, / -elimination to give the vinyl alcohol 6, which complexes to H-PdCl, reinsertion of the coordinated vinyl alcohol with opposite regiochemistry to give 7, and aldehyde formation by the elimination of Pd—H. [Pg.22]

Chemical Properties. Neopentyl glycol can undergo typical glycol reactions such as esterification (qv), etherification, condensation, and oxidation. When basic kinetic studies of the esterification rate were carried out for neopentyl glycol, the absolute esterification rate of neopentyl glycol with / -butyric acid was approximately 20 times that of ethylene glycol with / -butyric acid (7). [Pg.371]

T[[dotb]he nature of the initial attack by the water (eq. 10) is a matter of some controversy (205,206). Stereochemical and kinetic studies of model systems have been reported that support trans addition of external water (207,208) or internal addition of cis-coordinated water (209), depending on the particular model system under study. Other paHadium-cataly2ed oxidations of olefins ia various oxygen donor solvents produce a variety of products including aldehydes (qv), ketones (qv), vinyl acetate, acetals, and vinyl ethers (204). However the product mixtures are complex and very sensitive to conditions. [Pg.183]

Ethylene oxide catalyst research is expensive and time-consuming because of the need to break in and stabilize the catalyst before rehable data can be collected. Computer controlled tubular microreactors containing as Httle as 5 g of catalyst can be used for assessment of a catalyst s initial performance and for long-term life studies, but moving basket reactors of the Berty (77) or Carberry (78) type are much better suited to kinetic studies. [Pg.202]

The intermediate HCIO2 is rapidly oxidized to chloric acid. Some chlorine dioxide may also be formed. Kinetic studies have shown that decomposition to O2 and chloric acid increase with concentration, temperature (88), and exposure to light (89—92), and are pH dependent (93). Decomposition to O2 is also accelerated by catalysts, and decomposition to chlorate is favored by the presence of other electrolytes, eg, sodium chloride (94—96). [Pg.467]

Aqueous chlorine oxidizes numerous inorganic substrates. However, since HOCl and C10 coexist over a wide pH range, kinetic studies are necessary to estabHsh their respective roles both species are seldom active in the same reaction (97). The oxidation of CN is an important reaction in the treatment of waste-water and proceeds by the intermediate CICN (98). [Pg.467]

The reactivity of halogens in pyridazine N- oxides towards nucleophilic substitution is in the order 5 > 3 > 6 > 4. This is supported by kinetic studies of the reaction between the corresponding chloropyridazine 1-oxides and piperidine. In general, the chlorine atoms in pyridazine A-oxides undergo replacement with alkoxy, aryloxy, piperidino, hydrazino, azido, hydroxylamino, mercapto, alkylmercapto, methylsulfonyl and other groups. [Pg.27]

In well-established processes, like ethylene oxidation to ethylene oxide, quality control tests for a routinely manufactured catalyst can be very simple if the test is developed on the basis of detailed kinetic studies and modeling of the performance in a commercial reactor. Tests must answer questions that influence the economics of the commercial process. The three most important questions are ... [Pg.99]

After the preliminary tests are made on a promising catalyst and some insight gained on the process, it is time to do a kinetic study and model development. The method of a kinetic study can be best explained on an actual industrial problem. Because more can be learned from a failure than from a success, the oxidation of propylene to acrolein is an instructive attempt at process development. (Besides, to get permission to publish a success is more difficult than to solve the problem itself) Some details of the development work follow in narrative form to make the story short and to avoid embarrassing anyone. [Pg.124]

Recycle reactors at that time were called Backmix Reactors. They were correctly considered the worst choice for the production of a reactive intermediate, yet the best for kinetic studies. The aim of the kinetic study for ethylene oxidation was to maximize the quality of the information, leaving the optimization of production units for a later stage in engineering studies. The recycle reactors could provide the most precise results at well defined conditions even if at somewhat low selectivity to the desired product. [Pg.280]

A kinetic study of the mercuric acetate oxidation of l-alkyl-3,5-dimethyl-piperidines (81) and 3-alkyl-3-azabicyclo[3.3.1]nonanes (82) was made to evaluate the effect of the N-alkyl group on the rate of oxidation and to contrast these two ring systems (70). The maximum factor in the piperidine... [Pg.77]

The most widely accepted mechanism of reaction is shown in the catalytic cycle (Scheme 1.4.3). The overall reaction can be broken down into three elementary steps the oxidation step (Step A), the first C-O bond forming step (Step B), and the second C-O bond forming step (Step C). Step A is the rate-determining step kinetic studies show that the reaction is first order in both catalyst and oxidant, and zero order in olefin. The rate of reaction is directly affected by choice of oxidant, catalyst loadings, and the presence of additives such as A -oxides. Under certain conditions, A -oxides have been shown to increase the rate of reaction by acting as phase transfer catalysts. ... [Pg.30]

Kinetic studies of pyrolysis of azides, giving oxadiazole A-oxides in near-quantitative yields, showed that the 5-azido-6-nitroquinoline pyrolyzed in acetic acid 27.6 times faster than did 5-azidoquinolines, because of the -M effect of the group adjacent to the azide group (85AJC1045). [Pg.217]

Studies of the influence of irradiation on the kinetics of oxidation have been confined to post-irradiation work. In general, prior irradiation increases reactivity, although there are considerable inconsistencies in the enhancements obtained The effects can be derived from an increased surface area associated with the swelling voids produced in the metal by the irradiation, and can also probably arise to a lesser extent from chemical effects of the fission products. [Pg.910]

In contrast, Cozzi and Umani-Ronchi found the (salen)Cr-Cl complex 2 to be very effective for the desymmetrization of meso-slilbene oxide with use of substituted indoles as nucleophiles (Scheme 7.25) [49]. The reaction is high-yielding, highly enantioselective, and takes place exclusively at sp2-hybridized C3, independently of the indole substitution pattern at positions 1 and 2. The successful use of N-alkyl substrates (Scheme 7.25, entries 2 and 4) suggests that nucleophile activation does not occur in this reaction, in stark contrast with the highly enantioselective cooperative bimetallic mechanism of the (salen)Cr-Cl-catalyzed asymmetric azidolysis reaction (Scheme 7.5). However, no kinetic studies on this reaction were reported. [Pg.245]

The reaction scheme is rather complex also in the case of the oxidation of o-xylene (41a, 87a), of the oxidative dehydrogenation of n-butenes over bismuth-molybdenum catalyst (87b), or of ethylbenzene on aluminum oxide catalysts (87c), in the hydrogenolysis of glucose (87d) over Ni-kieselguhr or of n-butane on a nickel on silica catalyst (87e), and in the hydrogenation of succinimide in isopropyl alcohol on Ni-Al2Oa catalyst (87f) or of acetophenone on Rh-Al203 catalyst (87g). Decomposition of n-and sec-butyl acetates on synthetic zeolites accompanied by the isomerization of the formed butenes has also been the subject of a kinetic study (87h). [Pg.24]

Purely parallel reactions are e.g. competitive reactions which are frequently carried out purposefully, with the aim of estimating relative reactivities of reactants these will be discussed elsewhere (Section IV.E). Several kinetic studies have been made of noncompetitive parallel reactions. The examples may be parallel formation of benzene and methylcyclo-pentane by simultaneous dehydrogenation and isomerization of cyclohexane on rhenium-paladium or on platinum catalysts on suitable supports (88, 89), parallel formation of mesityl oxide, acetone, and phorone from diacetone alcohol on an acidic ion exchanger (41), disproportionation of amines on alumina, accompanied by olefin-forming elimination (20), dehydrogenation of butane coupled with hydrogenation of ethylene or propylene on a chromia-alumina catalyst (24), or parallel formation of ethyl-, methylethyl-, and vinylethylbenzene from diethylbenzene on faujasite (89a). [Pg.24]

In the course of this development, knowledge about low valent (in the sense of formal low oxidation states) reactive intermediates has significantly increased [26-30]. On the basis of numerous direct observations of silylenes (silanediyles), e.g., by matrix isolation techniques, the physical data and reactivities of these intermediates are now precisely known [31], The number of kinetic studies and theoretical articles on reactive intermediates of silicon is still continuously growing... [Pg.3]

The properties of barrier layers, oxides in particular, and the kinetic characteristics of diffusion-controlled reactions have been extensively investigated, notably in the field of metal oxidation [31,38]. The concepts developed in these studies are undoubtedly capable of modification and application to kinetic studies of reactions between solids where the rate is determined by reactant diffusion across a barrier layer. [Pg.37]

Few kinetic studies of the decompositions of higher oxides have been reported one probable reason is that the preparation of pure samples of these highly reactive compounds is difficult. Accordingly, interest has been largely restricted to the most readily available substances which are the alkali and alkaline earth peroxides (02-), superoxides (02) and ozonides (03). Some of these may be hydrated. E values reported [656] for the dehydrations of M02 8 H20 (288—313 K) were 96, 163 and 63 kJ mole-1 for the Ca, Sr and Ba compounds, respectively. [Pg.150]

The water elimination reactions of Co3(P04)2 8 H20 [838], zirconium phosphate [839] and both acid and basic gallium phosphates [840] are too complicated to make kinetic studies of more than empirical value. The decomposition of the double salt, Na3NiP3O10 12 H20 has been shown [593] to obey a composite rate equation comprised of two processes, one purely chemical and the other involving diffusion control, for which E = 38 and 49 kJ mole-1, respectively. There has been a thermodynamic study of CeP04 vaporization [841]. Decomposition of metal phosphites [842] involves oxidation and anion reorganization. [Pg.185]

There have been relatively few detailed kinetic studies of the decompositions of metal acetates, which usually react to yield [1046] either metal oxide and acetone or metal and acetic acid (+C02 + H2 + C). Copper(II) acetate resembles the formate in producing a volatile intermediate [copper(I) acetate] [152,1046,1047]. [Pg.216]

A kinetic study of the electrophilic substitution of pyridine-N-oxides has also been carried out50b,c. Rate-acidity dependencies were unfortunately given in graphical form only and the rate parameters (determined mostly over a 30 °C range) are given in Table 4b. There is considerable confusion in Tables 3 and 5 of the original paper, where the rate coefficients are labelled as referring to the free base. In fact the rate coefficients for the first three substituted compounds in... [Pg.20]

A kinetic study of nitration by nitric acid in carbon tetrachloride has been briefly reported and is of interest because of the third-order dependence of rate upon nitric acid concentration, for nitration of N-methyl-N-nitrosoaniline. This is believed to arise from equilibria (28) and (29) below, which give rise to a nitrosating species and nitration is achieved through subsequent oxidation of the nitrosated aromatic69. [Pg.35]

Katritzky et al.509 have also made a kinetic study of the deuteration of substituted pyridine-l-oxides (Table 147). For the 2,4,6-trimethyl compound, the rate-acidity profile shows the conjugate acid to be reacting. The slope of the plot, however, was less (0.33) than that (0.56) obtained for 2,4,6-trimethylpyridine... [Pg.229]


See other pages where Kinetic studies oxidation is mentioned: [Pg.664]    [Pg.664]    [Pg.207]    [Pg.88]    [Pg.342]    [Pg.241]    [Pg.268]    [Pg.92]    [Pg.258]    [Pg.433]    [Pg.97]    [Pg.123]    [Pg.128]    [Pg.241]    [Pg.305]    [Pg.858]    [Pg.383]    [Pg.88]    [Pg.424]    [Pg.673]    [Pg.549]    [Pg.7]    [Pg.68]    [Pg.179]    [Pg.264]   


SEARCH



Kinetic oxidative

Kinetic studies

Kinetics, studies

Oxidants kinetics

Oxidation studies

Oxidative kinetics

Oxidative studies

Oxide oxidation kinetics

Oxide studies

Oxide, kinetics

© 2024 chempedia.info