Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetic stability rate constants

Figure 4. Copper complexation by a pond fulvic acid at pH 8 as a function of the logarithm of [Cu2+]. On the x-axis, complex stability constants and kinetic formation rate constants are given by assuming that the Eigen-Wilkens mechanism is valid at all [M]b/[L]t. The shaded zone represents the range of concentrations that are most often found in natural waters. The + represent experimental data for the complexation of Cu by a soil-derived fulvic acid at various metakligand ratios. An average line, based on equations (26) and (30) is employed to fit the experimental data. Data are from Shuman et al. [2,184]... Figure 4. Copper complexation by a pond fulvic acid at pH 8 as a function of the logarithm of [Cu2+]. On the x-axis, complex stability constants and kinetic formation rate constants are given by assuming that the Eigen-Wilkens mechanism is valid at all [M]b/[L]t. The shaded zone represents the range of concentrations that are most often found in natural waters. The + represent experimental data for the complexation of Cu by a soil-derived fulvic acid at various metakligand ratios. An average line, based on equations (26) and (30) is employed to fit the experimental data. Data are from Shuman et al. [2,184]...
As the experiment is operating in the kinetic low-pressure regime, the decomposition rate constant can consequently be considered to be much larger than the stabilization rate constant term k fcs[He]. This leads to a simplified expression for the termolecular rate constant, which can be applied to the experimental conditions present in the ion trap experiment... [Pg.46]

From this description of ion transport, several interesting questions arise. Is there a rate-limiting step in the overall reaction sequence, or do all reactions take place at comparable rates Is the ion specificity of the carrier determined by thermodynamic factors alone (stability constant of the complex MS ), or also by kinetic parameters (rate constants) To answer these questions, a detailed kinetic analysis of the carrier system must be made. Such an analysis appears difficult at first because of the need to determine not only the four rate constants, Kr, Kd, Ks, and Kms, but also the concentration of the carrier in the bilayer. The analysis becomes possible, however, by combining measurement of steady-state conductance with results obtained from electrical relaxation experiments [328]. [Pg.338]

The applications of quantitative structure-reactivity analysis to cyclodextrin com-plexation and cyclodextrin catalysis, mostly from our laboratories, as well as the experimental and theoretical backgrounds of these approaches, are reviewed. These approaches enable us to separate several intermolecular interactions, acting simultaneously, from one another in terms of physicochemical parameters, to evaluate the extent to which each interaction contributes, and to predict thermodynamic stabilities and/or kinetic rate constants experimentally undetermined. Conclusions obtained are mostly consistent with those deduced from experimental measurements. [Pg.62]

The equilibrium constant K is the same for R =t-C4HJ and t-CsHi. As also the rate constants of carbonylation and decarbonylation are about equal for these two ions, it is concluded that both the thermodynamics and the kinetics of the carbonylation reaction are independent of the structure of R+, if R+ is an acyclic tertiary alkyl cation. This agrees with former findings (Brouwer, 1968) on the relative stabilities of such ions. [Pg.33]

For the determination of stabilizations of carbonium ions the equilibrium constants of carbonylation-decarbonylation have been used in previous Sections. For the ions discussed in this Seetion, however, the rate constants of decarbonylation are not known and, therefore, the rate constants of carbonylation will be used as a criterion for such stabilizations. This kinetic criterion is a useful indicator if there are no significant steric factors in the carbonylation step and if this step is indeed rate-determining in the overall process (Hogeveen and Gaasbeek, 1970). The following rate constants in Table 2 are of particular importance. [Pg.47]

The differences in the rate constant for the water reaction and the catalyzed reactions reside in the mole fraction of substrate present as near attack conformers (NACs).171 These results and knowledge of the importance of transition-state stabilization in other cases support a proposal that enzymes utilize both NAC and transition-state stabilization in the mix required for the most efficient catalysis. Using a combined QM/MM Monte Carlo/free-energy perturbation (MC/FEP) method, 82%, 57%, and 1% of chorismate conformers were found to be NAC structures (NACs) in water, methanol, and the gas phase, respectively.172 The fact that the reaction occurred faster in water than in methanol was attributed to greater stabilization of the TS in water by specific interactions with first-shell solvent molecules. The Claisen rearrangements of chorismate in water and at the active site of E. coli chorismate mutase have been compared.173 It follows that the efficiency of formation of NAC (7.8 kcal/mol) at the active site provides approximately 90% of the kinetic advantage of the enzymatic reaction as compared with the water reaction. [Pg.415]

The very slow dissociation rates for tight binding inhibitors offer some potential clinical advantages for such compounds, as described in detail in Chapter 6. Experimental determination of the value of k, can be quite challenging for these inhibitors. We have detailed in Chapters 5 and 6 several kinetic methods for estimating the value of the dissociation rate constant. When the value of kofS is extremely low, however, alternative methods may be required to estimate this kinetic constant. For example, equilibrium dialysis over the course of hours, or even days, may be required to achieve sufficient inhibitor release from the El complex for measurement. A significant issue with approaches like this is that the enzyme may not remain stable over the extended time course of such experiments. In some cases of extremely slow inhibitor dissociation, the limits of enzyme stability will preclude accurate determination of koff the best that one can do in these cases is to provide an upper limit on the value of this rate constant. [Pg.194]

CO3 species was formed and the X-ray structure solved. It is thought that the carbonate species forms on reaction with water, which was problematic in the selected strategy, as water was produced in the formation of the dialkyl carbonates. Other problems included compound solubility and the stability of the monoalkyl carbonate complex. Van Eldik and co-workers also carried out a detailed kinetic study of the hydration of carbon dioxide and the dehydration of bicarbonate both in the presence and absence of the zinc complex of 1,5,9-triazacyclododecane (12[ane]N3). The zinc hydroxo form is shown to catalyze the hydration reaction and only the aquo complex catalyzes the dehydration of bicarbonate. Kinetic data including second order rate constants were discussed in reference to other model systems and the enzyme carbonic anhy-drase.459 The zinc complex of the tetraamine 1,4,7,10-tetraazacyclododecane (cyclen) was also studied as a catalyst for these reactions in aqueous solution and comparison of activity suggests formation of a bidentate bicarbonate intermediate inhibits the catalytic activity. Van Eldik concludes that a unidentate bicarbonate intermediate is most likely to the active species in the enzyme carbonic anhydrase.460... [Pg.1185]

IR kinetic measurements on Cr(CO)5(N2) were a particular technological triumph (99) because not only were the strong vc—o bands observed but also the very weak (2240 cm J) and natural abundance vnCo bands were detected. The compound Cr(CO)5(N2) decayed at 25°C with a pseudo-first order rate constant of 1.7 second-1. Thus, Cr(CO)5(H2) and Cr(CO)5(N2) have similar thermal stabilities, and it has been one of the great surprises of the Miilheim work (96-99) to find how long-lived unstable molecules can be. [Pg.307]

Other companies (e.g., Hoechst) have developed a slightly different process in which the water content is low in order to save CO feedstock. In the absence of water it turned out that the catalyst precipitates. Clearly, at low water concentrations the reduction of rhodium(III) back to rhodium(I) is much slower, but the formation of the trivalent rhodium species is reduced in the first place, because the HI content decreases with the water concentration. The water content is kept low by adding part of the methanol in the form of methyl acetate. Indeed, the shift reaction is now suppressed. Stabilization of the rhodium species and lowering of the HI content can be achieved by the addition of iodide salts. High reaction rates and low catalyst usage can be achieved at low reactor water concentration by the introduction of tertiary phosphine oxide additives.8 The kinetics of the title reaction with respect to [MeOH] change if H20 is used as a solvent instead of AcOH.9 Kinetic data for the Rh-catalyzed carbonylation of methanol have been critically analyzed. The discrepancy between the reaction rate constants is due to ignoring the effect of vapor-liquid equilibrium of the iodide promoter.10... [Pg.144]

In the preceding chapter, thermodynamic aspects of macrocycle complexation were treated in some detail. In this chapter, kinetic aspects are discussed. Of course, kinetic and thermodynamic factors are interrelated. Thus, in terms of a simple complexation reaction of the type given below (charges not shown), the stability constant (/CML) may be expressed directly as the ratio of the second-order formation constant (kf) to the first-order dissociation rate constant (kd) ... [Pg.192]

The intramolecular 1,2-H shifts of alkylchlorocarbenes are often very rapid making it difficult to relate structure with reactivity in terms of absolute rate constants. For example the ku values of Me2CHCCl, PhCHMeCCl, and EtCCl exceed 108 s 1 in hydrocarbon solvents at 25°C (Table 4).60 86 87 However, due to the stabilizing effect of the oxa spectator substituent, acetoxycarbenes react at much reduced rates relative to their chlorocarbene analogues,90,91 thus providing kinetically accessible results for a wide array of bystander-substituted alkylacetoxycarbenes.81 92... [Pg.88]

As seen above (equation (5)), the basis of the simple bioaccumulation models is that the metal forms a complex with a carrier or channel protein at the surface of the biological membrane prior to internalisation. In the case of trace metals, it is extremely difficult to determine thermodynamic stability or kinetic rate constants for the adsorption, since for living cells it is nearly impossible to experimentally isolate adsorption to the membrane internalisation sites (equation (3)) from the other processes occurring simultaneously (e.g. mass transport complexation adsorption to other nonspecific sites, Seen, (equation (31)) internalisation). [Pg.474]


See other pages where Kinetic stability rate constants is mentioned: [Pg.420]    [Pg.342]    [Pg.17]    [Pg.46]    [Pg.248]    [Pg.423]    [Pg.5]    [Pg.42]    [Pg.260]    [Pg.975]    [Pg.978]    [Pg.87]    [Pg.107]    [Pg.355]    [Pg.310]    [Pg.311]    [Pg.173]    [Pg.544]    [Pg.430]    [Pg.17]    [Pg.158]    [Pg.237]    [Pg.71]    [Pg.857]    [Pg.149]    [Pg.200]    [Pg.96]    [Pg.303]    [Pg.478]    [Pg.627]    [Pg.32]    [Pg.135]    [Pg.237]    [Pg.360]    [Pg.1488]    [Pg.40]   
See also in sourсe #XX -- [ Pg.5 , Pg.144 ]




SEARCH



Kinetic constants

Kinetic constants constant

Kinetic rate constant

Kinetic rates

Kinetic stability

Kinetic stabilization

Kinetics constant

Rate Kinetics

Rate constant kinetics

Stability constants

Stability rates

Stabilization rate constant

© 2024 chempedia.info