Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetic processes, computer modeling

Work continues on improving the efficiency of this process, such as for freeing the alkan olamine from heat-stable salts that can form (125). Formulations have been developed which inhibit degradation of mono- and diethanolamine in processing (126). Models (127), computer programs (128), and kinetics and enthalpies (129—136) have been developed to help determine equiUbria of the acid gas—alkanolamine—water system. Additional references relate to the use of tertiary alkan olamines, such as triethanolamine, for gas conditioning (137—139). [Pg.10]

For adsorbates out of local equilibrium, an analytic approach to the kinetic lattice gas model is a powerful theoretical tool by which, in addition to numerical results, explicit formulas can be obtained to elucidate the underlying physics. This allows one to extract simplified pictures of and approximations to complicated processes, as shown above with precursor-mediated adsorption as an example. This task of theory is increasingly overlooked with the trend to using cheaper computer power for numerical simulations. Unfortunately, many of the simulations of adsorbate kinetics are based on unnecessarily oversimplified assumptions (for example, constant sticking coefficients, constant prefactors etc.) which rarely are spelled out because the physics has been introduced in terms of a set of computational instructions rather than formulating the theory rigorously, e.g., based on a master equation. [Pg.477]

Advanced computational models are also developed to understand the formation of polymer microstructure and polymer morphology. Nonuniform compositional distribution in olefin copolymers can affect the chain solubility of highly crystalline polymers. When such compositional nonuniformity is present, hydrodynamic volume distribution measured by size exclusion chromatography does not match the exact copolymer molecular weight distribution. Therefore, it is necessary to calculate the hydrodynamic volume distribution from a copolymer kinetic model and to relate it to the copolymer molecular weight distribution. The finite molecular weight moment techniques that were developed for free radical homo- and co-polymerization processes can be used for such calculations [1,14,15]. [Pg.110]

Abstract A review is provided on the contribution of modern surface-science studies to the understanding of the kinetics of DeNOx catalytic processes. A brief overview of the knowledge available on the adsorption of the nitrogen oxide reactants, with specific emphasis on NO, is provided first. A presentation of the measurements of NO, reduction kinetics carried out on well-characterized model system and on their implications on practical catalytic processes follows. Focus is placed on isothermal measurements using either molecular beams or atmospheric pressure environments. That discussion is then complemented with a review of the published research on the identification of the key reaction intermediates and on the determination of the nature of the active sites under realistic conditions. The link between surface-science studies and molecular computational modeling such as DFT calculations, and, more generally, the relevance of the studies performed under ultra-high vacuum to more realistic conditions, is also discussed. [Pg.67]

The understanding that the computers controlling the equipment might possess could be contained within a kinetic and thermodynamic model that encapsulates the detailed chemistry of the process. This would include a description of all the reactions that might be expected to occur under the conditions achievable in the plant, together with a list of the relevant rate constants and activation energies for each reaction. In addition, process variables, such as maximum flow rates or pump pressures that are needed for a full description of the behavior of the system under all feasible conditions, would be provided. [Pg.265]

Any on-line process control model used for computer-aided manufacturing of high-performance composite laminates must include a thorough treatment of void stability and growth as well as resin transport. These two key components, along with a heat transfer model and additional chemorheological information on kinetics and material properties, should permit optimized production of void-free, controlled-thickness parts. A number of advances have been made toward this goal. [Pg.204]

The strategy for research in the stratosphere has been to develop computer simulations to predict trends in photochemistry and ozone change. Incorporated in these simulations are laboratory data on chemical kinetics and photolytic processes and a theoretical understanding of atmospheric motions. An important aspect of this approach is knowing if the computer models represent the conditions of the stratosphere accurately enough that their predictions are valid. These models are made credible by comparisons with stratospheric observations. [Pg.145]

Computer Modeling of the Kinetics of Tautomerization (Mutarotation) of Aldoses Implications for the Mechanism of the Process... [Pg.28]

The meteoric rise in computer power (and meteoritic decline in hardware prices) has opened exciting avenues for computer modeling in all branches of science. Today, computer models are used in three main areas of catalysis research modeling of reaction pathways and catalytic cycles, modeling of process kinetics and reaction performance, and computing structure/activity relationships on various levels. The models cover a wide range of approaches and system types. [Pg.28]

Here we focus on the issue of how to build computational models of biochemical reaction systems. The two foci of the chapter are on modeling chemical kinetics in well mixed systems using ordinary differential equations and on introducing the basic mathematics of the processes that transport material into and out of (and within) cells and tissues. The tools of chemical kinetics and mass transport are essential components in the toolbox for simulation and analysis of living biochemical systems. [Pg.41]

Simulation, Modeling, and Design Feasibility Because reaction and separation phenomena are closely coupled in a reactive distillation process, simulation and design are significantly more complex than those of sequential reaction and separation processes. In spite of the complexity, however, most commercial computer process modeling packages offer reliable and flexible routines for simulating steady-state reactive distillation columns, with either equilibrium or kinetically controlled reaction models... [Pg.94]

The coupled code developed by Steefel and Lasaga (1994) for multicomponent reactive transport with kinetics of precipitation and dissolution of minerals has been developed further into the OS3D/GIMRT code (Steefel and Yabusaki, 1996). This model has been applied to reaction fronts in fracture-dominated flow systems (Steefel and Lichtner, 1998). Eurther developments for nonuniform velocity helds by Yabusaki et al. (1998) required the use of massively parallel processing computers, although ... the accuracy of the numerical formulation coupling the nonlinear processes becomes difficult to verify. ... [Pg.2307]

Nevertheless, a number of problems remain in modelling both the physical processes (fluid dynamics, heat transfer), the complex chemistry and the coupling between them. There are major limitations on the applicability of computer models and in the accuracy which simulations can achieve. It is of the utmost importance for model users to be aware of the main sources of error blind belief in the output from models can be dangerous and expensive. In this chapter we consider the major source of uncertainty in chemical simulations, whether full or reduced mechanisms are used, namely the quality and quantity of the available kinetics data. [Pg.235]

Due to Ae sensitivity to the kinetic data, Ae database and Ae computation model are separated to investigate Ae influence of different models and data on Ae conversion process. [Pg.590]


See other pages where Kinetic processes, computer modeling is mentioned: [Pg.305]    [Pg.926]    [Pg.1119]    [Pg.224]    [Pg.302]    [Pg.265]    [Pg.232]    [Pg.165]    [Pg.108]    [Pg.108]    [Pg.91]    [Pg.125]    [Pg.151]    [Pg.98]    [Pg.926]    [Pg.1113]    [Pg.79]    [Pg.252]    [Pg.173]    [Pg.443]    [Pg.460]    [Pg.1142]    [Pg.316]    [Pg.768]    [Pg.144]    [Pg.144]    [Pg.145]    [Pg.109]    [Pg.245]    [Pg.293]    [Pg.27]    [Pg.60]    [Pg.256]    [Pg.257]   


SEARCH



Computer processing

Computing processing

Process, kinetics

© 2024 chempedia.info