Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetic methods pulse radiolysis

Apart from these methods, pulse radiolysis, ESR and NMR spectroscopy, mass spectrometry, optical, chromatographic, and luminescent methods are also used. To study the kinetics and mechanism of the reactions in the early stages of polymerization pulse radiolysis with spectroscopic detection is often used [2-4],... [Pg.43]

Some of the most important questions one can ask in the study of kinetics concern the rates of reactions of the intermediates. In some cases, values can be obtained by direct experiments. For example, one might generate the intermediate by an independent method capable of producing it much more rapidly than it reacts. Then it can be examined in its own right. Chapter 11 presents methods for doing so, such as flash photolysis and pulse radiolysis. [Pg.103]

Proton inventory technique. 21.9-220 Pseudo-first-order kinetics, 16 Pulse-accelerated-flow method. 255 Pulse radiolysis, 266-268 Pump-probe technique. 266... [Pg.280]

However, much work has to be done before these intermediates are known well enough for us to understand, and control if possible, the stereo, regio- and chemo-selectivity of the bromination of any olefin. So far, most of the available data concern the two first ionization steps, but the final, product-forming, step is still inaccessible to the usual kinetic techniques. It would therefore be highly interesting to apply to bromination either the method of fast generation of reactive carbocations by pulse radiolysis (McClelland and Steenken, 1988) or the indirect method of competitive trapping (Jencks, 1980) to obtain data on the reactivity and on the life time of bromocation-bromide ion pairs that control this last step and, finally, the selectivities of the bromination products. [Pg.286]

Many transition metal complexes have been considered as synzymes for superoxide anion dismutation and activity as SOD mimics. The stability and toxicity of any metal complex intended for pharmaceutical application is of paramount concern, and the complex must also be determined to be truly catalytic for superoxide ion dismutation. Because the catalytic activity of SOD1, for instance, is essentially diffusion-controlled with rates of 2 x 1 () M 1 s 1, fast analytic techniques must be used to directly measure the decay of superoxide anion in testing complexes as SOD mimics. One needs to distinguish between the uncatalyzed stoichiometric decay of the superoxide anion (second-order kinetic behavior) and true catalytic SOD dismutation (first-order behavior with [O ] [synzyme] and many turnovers of SOD mimic catalytic behavior). Indirect detection methods such as those in which a steady-state concentration of superoxide anion is generated from a xanthine/xanthine oxidase system will not measure catalytic synzyme behavior but instead will evaluate the potential SOD mimic as a stoichiometric superoxide scavenger. Two methodologies, stopped-flow kinetic analysis and pulse radiolysis, are fast methods that will measure SOD mimic catalytic behavior. These methods are briefly described in reference 11 and in Section 3.7.2 of Chapter 3. [Pg.270]

The one-electron reduction potentials, (E°) for the phenoxyl-phenolate and phenoxyl-phenol couples in water (pH 2-13.5) have been measured by kinetic [pulse radiolysis (41)] and electrochemical methods (cyclic voltammetry). Table I summarizes some important results (41-50). The effect of substituents in the para position relative to the OH group has been studied in some detail. Methyl, methoxy, and hydroxy substituents decrease the redox potentials making the phe-noxyls more easily accessible while acetyls and carboxyls increase these values (42). Merenyi and co-workers (49) found a linear Hammett plot of log K = E°l0.059 versus Op values of substituents (the inductive Hammett parameter) in the 4 position, where E° in volts is the one-electron reduction potential of 4-substituted phenoxyls. They also reported the bond dissociation energies, D(O-H) (and electron affinities), of these phenols that span the range 75.5 kcal mol 1 for 4-amino-... [Pg.157]

A number of rate constants for reactions of transients derived from the reduction of metal ions and metal complexes were determined by pulse radiolysis [58]. Because of the shortlived character of atoms and oligomers, the determination of their redox potential is possible only by kinetic methods using pulse radiolysis. In the couple Mj/M , the reducing properties of M as electron donor as well as oxidizing properties of as electron acceptor are deduced from the occurrence of an electron transfer reaction with a reference reactant of known potential. These reactions obviously occur in competition with the cascade of coalescence processes. The unknown potential °(M /M ) is derived by comparing the action of several reference systems of different potentials. [Pg.585]

The time-resolved studies of the cluster formation achieved by pulse radiolysis techniques allow one to better understand the main kinetic factors which affect the final cluster size found, not only in the radiolytic method but also in other reduction (chemical or photochemical) techniques. Generally, reducing chemical agents are thermodynamically unable to reduce directly metal ions into atoms (Section 20.4) unless they are complexed or adsorbed on walls or dust particles. Therefore, we explain the higher sizes and the broad dispersity obtained in this case by in situ reduction on fewer sites. A classic... [Pg.595]

In a novel kinetic approach, Dorfman et al. developed methods for rapidly generating very reactive carbanions such as the benzyl anion in solvent mixtures containing water and alcohols. With pulsed radiolysis techniques, they have been able to study the fast and very exothermic reactions of carbanions with these solvents. The studies have shown that despite the high exothermicity, the protonation is not diffusion controlled and depends on the nature of the carbanion s counterion. [Pg.96]

In principle, absorption spectroscopy techniques can be used to characterize radicals. The key issues are the sensitivity of the method, the concentrations of radicals that are produced, and the molar absorptivities of the radicals. High-energy electron beams in pulse radiolysis and ultraviolet-visible (UV-vis) light from lasers can produce relatively high radical concentrations in the 1-10 x 10 M range, and UV-vis spectroscopy is possible with sensitive photomultipliers. A compilation of absorption spectra for radicals contains many examples. Infrared (IR) spectroscopy can be used for select cases, such as carbonyl-containing radicals, but it is less useful than UV-vis spectroscopy. Time-resolved absorption spectroscopy is used for direct kinetic smdies. Dynamic ESR spectroscopy also can be employed for kinetic studies, and this was the most important kinetic method available for reactions... [Pg.133]

Another approach for the formation of radical anions by LFP has been developed to overcome some of these difficulties. The approach involves the formation of radical anions by trapping a solvated electron produced by photoionization of 4,4 -dimethoxystilbene (DMS) to its cation radical (equations 31 and 32). This photoionization/electron trapping method is quite general for substrates that are transparent where DMS absorbs and that are more easily reduced than dimethoxystilbene. In many ways, this method is similar to pulse radiolysis, another useful approach used to generate radical anions for optical kinetic studies. [Pg.103]

A method for preparing a-methylstyrene to investigate its radiation-induced polymerization yields samples which exhibit reproducible kinetics. The kinetic results are interpreted as indicating that free radicals, carbonium ions, and carbanions can all propagate simultaneously, the relative importance of each species depending upon the dryness of the monomer and all associated glassware. This viewpoint is further supported by data from a preliminary investigation of the transients formed in a-methylstyrene, as studied by the pulse radiolysis technique. [Pg.180]

The solvated electron has been studied in a number of organic liquids, among which are the aliphatic alcohols (27, 28, 3, 2d, 2, 27), some ethers (25, 5), and certain amines (9, 22, 2). Of these systems, it is only in the alcohols, to which this paper is principally but not exclusively directed, that both the chemical reactivity and the optical absorption spectrum of the solvated electron have been investigated in detail. The method used in these studies is that of pulse radiolysis (22, 22), developed some five years ago. The way was shown for such investigations of the solvated electron by the observation of the absorption spectrum of the hydrated electron (6, 28, 19) and by the subsequent kinetic studies (2d, 22, 20) which are being discussed in other papers in this symposium. [Pg.43]

The pulse radiolysis method has been described in detail in some of the early papers (22, 22), in a brief review of the subject (23), and in a current comprehensive review (14). It is, in brief, a fast reaction method in which the external perturbation applied to the system is a microsecond pulse of electrons. The current is sufficiently high to produce an instantaneous concentration of transient species high enough to be observed by fast measurement of the optical absorption. Spectra may be recorded either photographically or spectrophotometrically. The kinetics are studied by fast spectrophotometry. Since a perturbing pulse as short as 0.4 /xsec. has been used, the time resolution has approached 10-7 sec. The flash photolysis method used in some of the other studies (27, 15) has been reviewed in detail (24). [Pg.43]

The experimental methods used in the investigation of the hydrated electron include competition kinetics and product analysis, as well as pulse-radiolysis and flash-photolysis techniques. All these methods have... [Pg.116]

Relative rate constants for reactions of OH have been measured by competitive methods in 7-irradiated solutions where product formation or reactant destruction have been monitored. These methods have generally been of low accuracy and can sometimes be misleading because of the possible complications in the processes between the initial reaction and the final products. Several competitors that allow the competition at the initial step to be followed became available for use with the pulse radiolysis technique in 1965 (Adams et al., 1965). Most of the rate constants for OH reported in the literature have been determined by this method. Numerous rates have also been determined by pulse radiolysis in an absolute way, i.e. by directly observing the kinetics of the formation of transient absorption or of the decay of the parent compound absorption. Direct observation of OH (or of H) by pulse radiolysis cannot help in obtaining reaction rates, because the absorption is in the far ultraviolet and one can observe only the tail of this absorption which at 200-250nm has a very low extinction coefficient ( 500 M -1 cm-1) (Pagsberg et al., 1969). A review of the experimental methods and summary of the rate constants of OH reactions has recently been published (Dorfman and Adams, 1973) and another compilation of rate constants is currently being prepared (Farhataziz and Ross, 1975). [Pg.236]

Pulse radiolysis is a powerful tool for the creation and kinetic investigation of highly reactive species. It was introduced to the field of radiation chemistry at the end of the 1950s and became popular in the early 1960s. Although the objects of this modern technique were, at first, limited to solvated electrons and related intermediates, it was soon applied to a variety of organic and inorganic substances. As early as 1964, ionic intermediates produced by electron pulses in vinyl monomers were reported for the first time. Since then, the pulse radiolysis method has achieved considerable success in the field of polymer science. [Pg.38]

Pulse radiolysis is one of the experimental methods for studying chemical kinetics. It is characterized by a short-lived perturbation of a system from the... [Pg.39]

The pulse radiolysis method is a powerful means of studying the kinetics in radiation chemistry. We investigated the ion beam interaction with polystyrene using this method. It is a unique system, because pulse radiolysis is usually an electron pulse radiolysis. [Pg.107]

Some of these cation-radicals have been generated in aqueous or alcoholic solutions by photolytic methods.196,197,209,216 ESR assignments for 1,3-dihydropyrimidiniumyl and 1,2-dihydropyridaziniumyl radicals as well as the isomeric 17 were obtained for aqueous solutions.196 The same three dihydrodiaziniumyl radicals have also been generated by pulse radiolysis, as was 1,4-dihydroquinoxaliniumyl, and spectroscopic, kinetic, and pK data... [Pg.262]

In solid-state studies, ESR spectroscopy is the best detection method for studying radical intermediates in radiolysis. It is, however, difficult to apply to liquid-phase studies, and generally, optical methods are favoured. In solid-state work, radicals are trapped (matrix-isolated) and can be studied by any spectroscopic technique at leisure. However, for liquid-phase studies, time-resolved methods are often necessary because the intermediates are usually very short lived. In the technique of pulse radiolysis, short pulses of radiation, followed by pulses of light which explore the UV spectrum, are used. The spectra help to identify the species, but also their kinetic behaviour can be accurately monitored over very short time-scales (from picoseconds to milliseconds). This technique is discussed in Section 3.3. [Pg.23]


See other pages where Kinetic methods pulse radiolysis is mentioned: [Pg.166]    [Pg.511]    [Pg.129]    [Pg.151]    [Pg.37]    [Pg.18]    [Pg.823]    [Pg.49]    [Pg.178]    [Pg.283]    [Pg.139]    [Pg.281]    [Pg.287]    [Pg.337]    [Pg.361]    [Pg.582]    [Pg.189]    [Pg.511]    [Pg.144]    [Pg.144]    [Pg.75]    [Pg.157]    [Pg.276]    [Pg.391]    [Pg.6]    [Pg.670]    [Pg.218]    [Pg.254]    [Pg.237]    [Pg.444]   
See also in sourсe #XX -- [ Pg.294 , Pg.304 , Pg.306 , Pg.307 , Pg.310 ]




SEARCH



Kinetic methods

Kinetics method

Pulse radiolysis method

Pulsed Methods

Pulsed-radiolysis

© 2024 chempedia.info