Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetic, flow reactor

Mueller M A, Yetter R A and Dryer F L 1999 Flow reactor studies and kinetic modelling of the... [Pg.2147]

Although the Arrhenius equation does not predict rate constants without parameters obtained from another source, it does predict the temperature dependence of reaction rates. The Arrhenius parameters are often obtained from experimental kinetics results since these are an easy way to compare reaction kinetics. The Arrhenius equation is also often used to describe chemical kinetics in computational fluid dynamics programs for the purposes of designing chemical manufacturing equipment, such as flow reactors. Many computational predictions are based on computing the Arrhenius parameters. [Pg.164]

Both kinetic and equilibrium experimental methods are used to characterize and compare adsorption of aqueous pollutants in active carbons. In the simplest kinetic method, the uptake of a pollutant from a static, isothermal solution is measured as a function of time. This approach may also yield equilibrium adsorption data, i.e., amounts adsorbed for different solution concentrations in the limit t —> qo. A more practical kinetic method is a continuous flow reactor, as illustrated in Fig. 5. [Pg.107]

The performance data for plug versus mix reactor were obtained. The data were collected as the inverse of qx vs inverse of substrate concentration. Table E.1.1 shows the data based on obtained kinetic data. From the data plotted in Figure E.1.1, we can minimise the volume of the chemostat. A CSTR works better than a plug flow reactor for the production of biomass. Maximum qx is obtained with a substrate concentration in the leaving stream of 12g m 3. [Pg.300]

The piston flow reactor has an advantage over a stirred tank reactor when the kinetics is of positive order, but the reverse is true when the... [Pg.118]

In Fig. 28, the abscissa kt is the product of the reaction rate constant and the reactor residence time, which is proportional to the reciprocal of the space velocity. The parameter k co is the product of the CO inhibition parameter and inlet concentration. Since k is approximately 5 at 600°F these three curves represent c = 1, 2, and 4%. The conversion for a first-order kinetics is independent of the inlet concentration, but the conversion for the kinetics of Eq. (48) is highly dependent on inlet concentration. As the space velocity increases, kt decreases in a reciprocal manner and the conversion for a first-order reaction gradually declines. For the kinetics of Eq. (48), the conversion is 100% at low space velocities, and does not vary as the space velocity is increased until a threshold is reached with precipitous conversion decline. The conversion for the same kinetics in a stirred tank reactor is shown in Fig. 29. For the kinetics of Eq. (48), multiple solutions may be encountered when the inlet concentration is sufficiently high. Given two reactors of the same volume, and given the same kinetics and inlet concentrations, the conversions are compared in Fig. 30. The piston flow reactor has an advantage over the stirred tank... [Pg.119]

Kinetics c/c0 in piston flow reactor Si, Sc o c/c0 in stirred tank reactor St,... [Pg.121]

These two parameters describe the change in fraction unconverted with a percentage change in kt or in c0. The first sensitivity is also the slope of the curves in Fig. 28. The values of these sensitivities are given in Table IX. In a piston flow reactor where the conversion level is c/c0 = 0.1, the value of Stt is —0.23 for the first-order kinetics, —0.90 for the zero-order kinetics, and —4.95 for the negative first-order kinetics. In the stirred tank reactor, the value of the sensitivities Skt is —0.09 for the first-order kinetics, — 0.90 for the zero-order kinetics, and +0.11 for the negative first-order kinetics. A positive sensitivity means that as kt is increased, the fraction unconverted also increases, clearly an unstable situation. [Pg.122]

Ammonia Oxidation Kinetics in a High Temperature Flow Reactor , Univ California, Berkeley UCB-TS-71-6, AFOSR (1971)... [Pg.282]

Although many industrial reactions are carried out in flow reactors, this procedure is not often used in mechanistic work. Most experiments in the liquid phase that are carried out for that purpose use a constant-volume batch reactor. Thus, we shall not consider the kinetics of reactions in flow reactors, which only complicate the algebraic treatments. Because the reaction volume in solution reactions is very nearly constant, the rate is expressed as the change in the concentration of a reactant or product per unit time. Reaction rates and derived constants are preferably expressed with the second as the unit of time, even when the working unit in the laboratory is an hour or a microsecond. Molarity (mol L-1 or mol dm"3, sometimes abbreviated M) is the preferred unit of concentration. Therefore, the reaction rate, or velocity, symbolized in this book as v, has the units mol L-1 s-1. [Pg.3]

Chapter 1 treated single, elementary reactions in ideal reactors. Chapter 2 broadens the kinetics to include multiple and nonelementary reactions. Attention is restricted to batch reactors, but the method for formulating the kinetics of complex reactions will also be used for the flow reactors of Chapters 3 and 4 and for the nonisothermal reactors of Chapter 5. [Pg.35]

Solution of the design equations for liquid-phase piston flow reactors is usually easier than for gas-phase reactors because pressure t5q)icaUy has no effect on the fluid density or the reaction kinetics. Extreme pressures are an exception that theoretically can be handled by the same methods used for gas-phase systems. The difficulty will be finding an equation of state. For ordinary pressures, the... [Pg.95]

When kinetic measurements are made in batch or piston flow reactors, the reaction rate is not determined directly. Instead, an integral of the rate is measured, and the rate itself must be inferred. The general approach is as follows ... [Pg.211]

Most kinetic experiments are run in batch reactors for the simple reason that they are the easiest reactor to operate on a small, laboratory scale. Piston flow reactors are essentially equivalent and are implicitly included in the present treatment. This treatment is confined to constant-density, isothermal reactions, with nonisothermal and other more complicated cases being treated in Section 7.1.4. The batch equation for component A is... [Pg.218]

Suppose now that a pilot-plant or full-scale reactor has been built and operated. How can its performance be used to confirm the kinetic and transport models and to improve future designs Reactor analysis begins with an operating reactor and seeks to understand several interrelated aspects of actual performance kinetics, flow patterns, mixing, mass transfer, and heat transfer. This chapter is concerned with the analysis of flow and mixing processes and their interactions with kinetics. It uses residence time theory as the major tool for the analysis. [Pg.539]

In Fig. 1, a comparison can be observed for the prediction by the honeycomb reactor model developed with the parameters directly obtained from the kinetic study over the packed-bed flow reactor [6] and from the extruded honeycomb reactor for the 10 and 100 CPSI honeycomb reactors. The model with both parameters well describes the performance of both reactors although the parameters estimated from the honeycomb reactor more closely predict the experiment data than the parameters estimated from the kinetic study over the packed-bed reactor. The model with the parameters from the packed-bed reactor predicts slightly higher conversion of NO and lower emission of NHj as the reaction temperature decreases. The discrepancy also varies with respect to the reactor space velocity. [Pg.447]

The kinetic parameters estimated by the experimental data obtained frmn the honeycomb reactor along with the packed bed flow reactor as listed in Table 1 reveal that all the kinetic parameters estimated from both reactors are similar to each other. This indicates that the honeycomb reactor model developed in the present study can directly employ intrinsic kinetic parameters estimated from the kinetic study over the packed-bed flow reactor. It will significantly reduce the efibrt for predicting the performance of monolith and estimating the parameters for the design of the commercial SCR reactor along with the reaction kinetics. [Pg.447]

Based on the kinetic mechanism and using the parameter values, one can analyze the continuous stirred tank reactor (CSTR) as well as the dispersed plug flow reactor (PFR) in which the reaction between ethylene and cyclopentadiene takes place. The steady state mass balance equations maybe expressed by using the usual notation as follows ... [Pg.710]

The question of how to deal with the kinetics of such coupled processes depends on the sort of reactor employed. We will distinguish two cases, namely the flow reactor and the batch reactor (Fig. 2.4). [Pg.41]

As described above, the activity of a catalyst can be measured by mounting it in a plug flow reactor and measuring its intrinsic reactivity outside equilibrium, with well-defined gas mixtures and temperatures. This makes it possible to obtain data that can be compared with micro-kinetic modeling. A common problem with such experiments materializes when the rate becomes high. Operating dose to the limit of zero conversion can be achieved by diluting the catalyst with support material. [Pg.206]

A system has been constructed which allows combined studies of reaction kinetics and catalyst surface properties. Key elements of the system are a computer-controlled pilot plant with a plug flow reactor coupled In series to a minireactor which Is connected, via a high vacuum sample transfer system, to a surface analysis Instrument equipped with XFS, AES, SAM, and SIMS. When Interesting kinetic data are observed, the reaction Is stopped and the test sample Is transferred from the mlnlreactor to the surface analysis chamber. Unique features and problem areas of this new approach will be discussed. The power of the system will be Illustrated with a study of surface chemical changes of a Cu0/Zn0/Al203 catalyst during activation and methanol synthesis. Metallic Cu was Identified by XFS as the only Cu surface site during methanol synthesis. [Pg.15]


See other pages where Kinetic, flow reactor is mentioned: [Pg.796]    [Pg.796]    [Pg.2117]    [Pg.510]    [Pg.561]    [Pg.29]    [Pg.407]    [Pg.745]    [Pg.301]    [Pg.119]    [Pg.295]    [Pg.28]    [Pg.95]    [Pg.218]    [Pg.458]    [Pg.338]    [Pg.252]    [Pg.239]    [Pg.240]    [Pg.218]    [Pg.23]    [Pg.204]    [Pg.16]    [Pg.672]    [Pg.282]    [Pg.292]    [Pg.308]   
See also in sourсe #XX -- [ Pg.102 ]




SEARCH



Fast flow reactor kinetics

Flow tube reactor kinetics

Kinetic Studies Using a Tubular Reactor with Plug Flow

Kinetically Limited Adiabatic Reactors (Batch and Plug Flow)

Multistationarity in kinetic models of continuous flow stirred tank reactors

Plug flow reactors kinetic studies using

Reactor kinetics

Tubular flow reactors kinetic data

Tubular reactors with plug flow kinetic studies using

© 2024 chempedia.info