Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetic arc

Two impedance arcs, which correspond to two relaxation times (i.e., charge transfer plus mass transfer) often occur when the cell is operated at high current densities or overpotentials. The medium-frequency feature (kinetic arc) reflects the combination of an effective charge-transfer resistance associated with the ORR and a double-layer capacitance within the catalyst layer, and the low-fiequency arc (mass transfer arc), which mainly reflects the mass-transport limitations in the gas phase within the backing and the catalyst layer. Due to its appearance at low frequencies, it is often attributed to a hindrance by finite diffusion. However, other effects, such as constant dispersion due to inhomogeneities in the electrode surface and the adsorption, can also contribute to this second arc, complicating the analysis. Normally, the lower-frequency loop can be eliminated if the fuel cell cathode is operated on pure oxygen, as stated above [18],... [Pg.223]

As can be seen in these figures, the low-frequency arc, which is dependent on electrode potential, is the well-known kinetic arc. But close examination of the high-frequency region (1-20 kHz) in the AC spectra reveals a certain distortion of the kinetic arc from a perfect semicircle, which is the result of superimposition of a small potential-independent impedance branch on the kinetic arc. This behaviour was observed for all types of membranes, experimental conditions, and electrodes employed in Paganin et al. s [4] work. [Pg.266]

Figure 6.5 shows the AC impedance spectra of the same fuel cells measured at different cathodic potentials. It is evident that as the overpotential increases, the diameter of the kinetic arc decreases due to the increasing kinetic rate. At low overpotential, the kinetics dominates and only the kinetic arc appears. At high overpotentials, the low-frequency region shows additional arcs, which are associated with mass-transport limitations across the gas diffusion layer and within the catalyst layer. [Pg.268]

In Figure 6.5a it can be seen that the kinetic arc for the electrode with 30 wt% PTFE content in the gas diffusion layer has the smallest diameter. Indeed, the spectra for this electrode all have the minimum kinetic loop measured at all three cathode potentials, as seen in Figure 6.5b and c. This result is in agreement with that from the polarization curve measurements however, AC impedance spectra provide more information than polarization curves. This figure shows that the impedance arc due to mass transport in the low-frequency region grows with increasing electrode overpotential and is very sensitive to PTFE content in the gas diffusion layer. [Pg.270]

Song et al. [5] explained that for the electrode with 40 wt% PTFE content in the gas diffusion layer, the increase in the size of the kinetic arc was attributable to the substantial decrease in the active Pt area caused by low water content at the interface of the catalyst layer and the gas diffusion layer. This explanation has been verified by cyclic voltammetric results. A possible solution to improve the performance of this particular electrode is simply to raise the humidification temperature in order to increase the water content at the interface. The results at higher humidification temperatures are shown in Figures 6.6 and 6.7. [Pg.270]

Figure 6.6 proves that increasing the humidification temperature does improve fuel cell performance. Figure 6.7 also confirms that the size of the kinetic arc does decrease with increasing humidification temperature. From these results the authors concluded that it was the reduced water content at the interface that caused the increased charge-transfer resistance of the electrode with excessive PTFE content (40 wt%). [Pg.271]

When (—)-2-bromooctanc is converted into the alcohol under conditions (low [OH ]) where first-order kinetics arc followed, there is obtained ( + )-2-octanol. [Pg.468]

In the limit the column kinetics arc determined by the diffusion coefficients hence the need for data outlined above. [Pg.190]

The assumptions underlying the choice of this type of kinetics arc negligible effect of the reverse reaction as well as pseudoconstant values of concentrations of some of the other components and also of the homogeneous catalyst. Only the latter is generally justified. Hence, first-order kinetics is a crude approximation which can only be applied over certain ranges of concentration with different rate constants applying to different locations in the column. [Pg.406]

Kinetic en aluation Clearly, the most in-depth evaluation would be based on the kinetic modeling of a reaction pathway. Unfortunately, in many cases insufficient experimental data arc available to develop a full kinetic model of a reaction pathway. Nevertheless, it has been shown with various examples that the development of a kinetic model is possible. This has been performed for the acid-... [Pg.552]

The question is now Which reaction pathways arc Followed, and to what extent This asks for a detailed modeling of the kinetics of the individual reaction steps of this network. This can be achieved on the basis of the half-lives of four s-triazinc herbicides in soil [17]. Figure 10.3-13 shows the four compounds For which data were Found in the literature. [Pg.553]

The theory of chemical reactions has many facets iiicliidiiig elaborate qnaritiim mechanical scattering approaches that treat the kinetic energy of atoms by proper wave mechanical methods. These approaches to chemical reaction theory go far beyond the capabilities of a product like HyperChem as many of the ideas arc yet to have wide-spread practical im plemeiitation s. [Pg.327]

Figure 12-11. Self-heat rate analysis. ARC data are shown along with a fitted model obtained by assuming the following kinetic parameters reaction order = 1, activation energy = 31.08 kcal/mol, and frequency factor = 2.31 El 2 min ... Figure 12-11. Self-heat rate analysis. ARC data are shown along with a fitted model obtained by assuming the following kinetic parameters reaction order = 1, activation energy = 31.08 kcal/mol, and frequency factor = 2.31 El 2 min ...
According to this very simple derivation and result, the position of the transition state along the reaction coordinate is determined solely by AG° (a thermodynamic quantity) and AG (a kinetic quantity). Of course, the potential energy profile of Fig. 5-15, upon which Eq. (5-60) is based, is very unrealistic, but, quite remarkably, it is found that the precise nature of the profile is not important to the result provided certain criteria are met, and Miller " obtained Eq. (5-60) using an arc length minimization criterion. Murdoch has analyzed Eq. (5-60) in detail. Equation (5-60) can be considered a quantitative formulation of the Hammond postulate. The transition state in Fig. 5-9 was located with the aid of Eq. (5-60). [Pg.224]

In order to distinguish between kinetic and thermodynamic phenomena it is convenient to refer to the former as the 7tr/ i-effect and the latter as the tra/u-influence or static /ra/u-effect". though this nomenclature is by no means universally accepted. However, it appears that to account satisfactorily for the kinetic /rau.s-effect , both it (kinetic) and a (thermodynamic) effects must be invoked to greater or les.ser extents. Thus, for ligands which are low in the Trans series (e.g. halides), the order can be explained on the basis of a u effect whereas for ligands which arc high in the series the order is best interpreted on the basis of a jt effect. Even so, the relatively high position of H , which can have no rr-acceptor properties, seems to be a result of a a mechanism or some other interaction. [Pg.1164]

Upon carefully controlled hydrolysis with hydrochloric acid at room temperature, the corresponding serine methyl esters 4 are obtained in reasonable yields. Higher yields of 4 arc obtained by hydrolyzing with dilute trifluoroacetic acid5. In some cases, the diastereomeric ratio of 4 does not exactly correspond to the d.r. of the adduct 3, which is attributed to different kinetics in the hydrolysis of the diastereomers 4. Subsequent treatment of the methyl ester with excess 5 N hydrochloric acid and methyloxirane as an acid scavenger results in the free amino acid 54,7. [Pg.619]

Lithiated areneacetonitriles react with a,/i-unsaturated ketones at low temperatures using short reaction times to give both 1,2- and 1,4-adducts. The 1,2-addition is reversible and under thermodynamic control (higher temperatures and longer reaction times) only the 1,4-adducts, i.e., <5-oxonitriles, arc obtained. When lithiated arylacetonitrile is added to 2-substituted 2-cy-cloalkenones in THF or in THF/HMPA mixtures at — 70-0°C, followed by protonation or alkylation under kinetically controlled conditions, predominantly cis- or fnms-2,3-disubstitut-ed cycloalkanones respectively, are obtained. [Pg.967]

Thus alkyl radicals do not give unwanted end-group functionality and the kinetics of initiation arc comparatively uncomplicated. However, this situation can be perturbed by substitution at or near the radical center. [Pg.113]

In this section, we consider the kinetics of propagation and the features of the propagating radical (Pn ) and the monomer (M) structure that render the monomer polymerizable by radical homopolymerization (Section 4.5.1). The reactivities of monomers towards initiator-derived species (Section 3.3) and in copolymerizalion (Chapter 6) arc considered elsewhere. [Pg.213]


See other pages where Kinetic arc is mentioned: [Pg.178]    [Pg.179]    [Pg.219]    [Pg.239]    [Pg.272]    [Pg.278]    [Pg.285]    [Pg.364]    [Pg.377]    [Pg.178]    [Pg.179]    [Pg.219]    [Pg.239]    [Pg.272]    [Pg.278]    [Pg.285]    [Pg.364]    [Pg.377]    [Pg.1917]    [Pg.2964]    [Pg.313]    [Pg.178]    [Pg.522]    [Pg.184]    [Pg.483]    [Pg.2311]    [Pg.571]    [Pg.926]    [Pg.124]    [Pg.154]    [Pg.157]    [Pg.35]    [Pg.225]    [Pg.782]    [Pg.1053]    [Pg.73]    [Pg.141]    [Pg.217]    [Pg.235]   
See also in sourсe #XX -- [ Pg.219 , Pg.223 , Pg.239 , Pg.266 , Pg.278 , Pg.285 ]




SEARCH



Kinetics in Low-Pressure Cascade Arc Torch

© 2024 chempedia.info