Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ketones Henry reaction

The synthedc ndlity of the Henry reaction is shovm in Scheme 3.1, where fi-nitro alcohols are converted into fi-amino alcohols, amino sugars, ketones and other important compounds. [Pg.30]

The Henry reaction of ketones with nitroalkanes in the presence of etbylenediamine gives allylic nitro compounds, which give a,fi-imsanirated carbonyl compounds via the Nef reaction fEq. 6.30. ... [Pg.167]

In the presence of a catalytic amount of tetrabutylammonium fluoride, either freshly dried over molecular sieves22 or as the trihydrate16, silylnitronates 2 derived from primary nitroalkanes react readily at — 78 C or below, via their in situ generated nitronates. with aromatic and aliphatic aldehydes to give the silyl-protected (/J, S )-nitroaldol adducts 3 in excellent yield4,22-24-26,27. Silylnitronates, derived from secondary nitroalkanes. afford the adducts in 30 40% overall yield24. In contrast to the classical Henry reaction (vide supra), the addition of silylnitronates to aldehydes is irreversible. Ketones are unreaetive under such conditions. [Pg.631]

Henry reactions 317-20 hydrosilylations 333 organozinc reagents, addition to ketones 156-80 PrMgCl to cyclohexenone with crown thioether ligands 100-1 see also specific ZnEt2 and ZnR2 addition reactions... [Pg.386]

Jenner investigated the kinetic pressure effect on some specific Michael and Henry reactions and found that the observed activation volumes of the Michael reaction between nitromethane and methyl vinyl ketone are largely dependent on the magnitude of the electrostriction effect, which is highest in the lanthanide-catalyzed reaction and lowest in the base-catalyzed version. In the latter case, the reverse reaction is insensitive to pressure.52 Recently, Kobayashi and co-workers reported a highly efficient Lewis-acid-catalyzed asymmetric Michael addition in water.53 A variety of unsaturated carbonyl derivatives gave selective Michael additions with a-nitrocycloalkanones in water, at room temperature without any added catalyst or in a very dilute aqueous solution of potassium carbonate (Eq. 10.24).54... [Pg.323]

Proazaphosphatrane, P(RNCH2CH2)3N, is an efficient catalyst for the Henry reaction, and various ketones give nitro-aldols by the reaction with nitromethane and other nitroalkanes (Eq. 3.20).21... [Pg.37]

The retro-Henry reaction of 2-nitrocycloalkanols gives co-nitro ketones, as shown in Eq. 5.23.38... [Pg.133]

The conversion of primary or secondary nitro compounds into aldehydes or ketones is normally accomplished by use of the Nef reaction, which is one of the most important transformations of nitro compounds. Various methods have been introduced forthis transformation (1) treatment of nitronates with acid, (2) oxidation of nitronates, and (3) reduction of nitroalkenes. Although a comprehensive review is available,3 important procedures and improved methods published after this review are presented in this chapter. The Nef reaction after the nitro-aldol (Henry reaction), Michael addition, or Diels-Alder reaction using nitroalkanes or nitroalkenes has been used extensively in organic synthesis of various substrates, including complicated natural products. Some of them are presented in this chapter other examples are presented in the chapters discussing the Henry reaction (Chapter 3), Michael addition (Chapter 4), and Diels-Alder reaction (Chapter 8). [Pg.159]

The nucleophilic addition of nitroalkane to carbonyl groups is known as the Henry reaction. The products of the Henry reaction are 2-nitroalkanols,115 which are useful intermediates for nitroalkenes, 2-amino alcohols, and 2-nitro-ketones. However, this does not always give high yields because of the possible O-alkylation in preference to C-alkylation during the Henry reaction. [Pg.187]

In this section the synthesis of fluoroalkyl (Section 15.1.4.1.3), a,a-difluoroalkyl (Section 15.1.4.2.3), and trifluoromethyl- and perfluoroalkyl ketones are discussed collectively. The second most widely used method for synthesizing peptide fluoromethyl ketones is the Henry nitro-aldol condensation reaction, which involves the use of (3-nitro alcohols to build the fluoromethyl ketones. As with the modified Dakin-West procedure, the Henry reaction has also been used to synthesize mono-, di-, tri-, and extended fluoromethyl ketones, making it another extremely versatile synthetic method.19 12 19 27 29 33 341 However, similar to the Dakin-West procedure, the products of the Henry reaction are not chiral, since an achiral carbanion is involved in the crucial carbon bond forming step. [Pg.237]

The Henry Reaction is a base-catalyzed C-C bond-forming reaction between nitroalkanes and aldehydes or ketones. It is similar to the Aldol Addition, and also referred to as the Nitro Aldol Reaction. [Pg.124]

Steroidal, alicyclic or aromatic annulated pyridines were prepared via a microwave-assisted, base-catalyzed Henry reaction of /1-formyl enamides and nitromethane on an alumina support [97]. Highly substituted tri- and tetrasubstituted pyridines were synthesized in a Bohlmann-Rahtz reaction from ethyl /3-amino crotonate and various alkynones. The reaction involved a Michael addition-cyclodehydration sequence and was effected in a single synthetic step under microwave heating conditions [98]. An alternative approach towards polysubstituted pyridines was based on a reaction sequence involving an inverse electron-demand Diels-Alder reaction between various enamines 45 and 1,2,4-triazines 44 (Sect. 3.6), followed by loss of nitrogen and subsequent elimination-aromatization. Enamines 45 were formed in situ from various ketones and piperidine under one-pot microwave dielectric heating conditions [99]. Furthermore, a remarkable acceleration of the reaction speed (from hours and days to minutes) was observed in a microwave-assisted cycloaddition. Unsymmetrically substituted enamines 45 afforded mixtures of regioisomers (Scheme 35). [Pg.79]

The nitroaldol (Henry) reaction, first described in 1859, is a carbon-carbon bondforming reaction between an aldehyde or ketone and a nitroalkane, leading to a nitroalcohol adduct [29]. The nitroalcohol compounds, synthetically versatile functionalized structural motifs, can be transformed to many important functional groups, such as 1,2-amino alcohols and a-hydroxy carboxylic acids, common in chemical and biological structures [18, 20, 30, 31]. Because of their important structural transformations, new synthetic routes using transition metal catalysis and enzyme-catalyzed reactions have been developed to prepare enantiomerically pure nitroaldol adducts [32-34]. [Pg.68]

Nitroalkanes having an a-hydrogen atom undergo aldol-type condensation with aldehydes and ketones in the presence of a base to give p-hydroxy nitro compounds or nitroethylene compounds. The reaction is known as the Henry reaction " or nitroaldol reaction. [Pg.122]

Hence, the first clearcut evidence for the involvement of enol radical cations in ketone oxidation reactions was provided by Henry [109] and Littler [110,112]. From kinetic results and product studies it was concluded that in the oxidation of cyclohexanone using the outer-sphere one-electron oxidants, tris-substituted 2,2 -bipyridyl or 1,10-phenanthroline complexes of iron(III) and ruthenium(III) or sodium hexachloroiridate(IV) (IrCI), the cyclohexenol radical cation (65" ) is formed, which rapidly deprotonates to the a-carbonyl radical 66. An upper limit for the deuterium isotope effect in the oxidation step (k /kjy < 2) suggests that electron transfer from the enol to the metal complex occurs prior to the loss of the proton [109]. In the reaction with the ruthenium(III) salt, four main products were formed 2-hydroxycyclohexanone (67), cyclohexenone, cyclopen tanecarboxylic acid and 1,2-cyclohexanedione, whereas oxidation with IrCl afforded 2-chlorocyclohexanone in almost quantitative yield. Similarly, enol radical cations can be invoked in the oxidation reactions of aliphatic ketones with the substitution inert dodecatungstocobaltate(III), CoW,20 o complex [169]. Unfortunately, these results have never been linked to the general concept of inversion of stability order of enol/ketone systems (Sect. 2) and thus have never received wide attention. [Pg.204]

When aliphatic nitro compounds are used instead of aldehydes or ketones, no reduction occurs, and the reaction has been referred to as a Tollens reaction (see 16-43). However, the classical condensation of an aliphatic nitro compound with an aldehyde or ketone is usually called the Henry reaction or the Kamlet reaction, and is essentially a nitro aldol reaction. A variety of conditions have been reported, including the use of a silica catalyst, Mg—A1 hydrotalcite, a tetraalkylam-monium hydroxide,proazaphosphatranes, " or an ionic liquid.A solvent free Henry reaction was reported in which a nitroalkane and an aldehyde were reacted on KOH powder. Potassium phosphate has been used with nitromethane and aryl aldehydes. The Henry reaction has been done using ZnEt2 and 20%... [Pg.1357]

Bols [27] reported an improved synthesis of isofagomin 32 and noeuromycin 34 from D-ara-binose in six and seven steps, respectively. As shown in O Scheme 12, Henry reaction of ketone sugar 29 gave the nitromethane adduct benzyl 4-deoxy-4-C-nitromethylene-D-arabi-... [Pg.310]

The synthesis of the bisbenzannelated spiroketal core of the y-rubromycins was achieved by the research team of C.B. de Koning." The key step was the Nef reaction of a nitroolefin, which was prepared by the Henry reaction between an aromatic aldehyde and a nitroalkane. The nitroolefin was a mixture of two stereoisomers, and it was subjected to catalytic hydrogenation in the presence of hydrochloric acid. The hydrogenation accomplished two different tasks it first converted the nitroalkene to the corresponding oxime and removed the benzyl protecting groups. The oxime intermediate was hydrolyzed to a ketone that underwent spontaneous spirocyclization to afford the desired spiroketal product. [Pg.309]

Jenner, G. Effect of high pressure on Michael and Henry reactions between ketones and nitroalkanes. NewJ. Chem. 1999, 23, 525-529. [Pg.599]

Quite recently, Bandini, Umani-Ronchi and coworkers also reported the highly enantioselective Henry reaction of the various trifluoromethyl ketones 54 with nitromethane catalyzed by the C6 -hydroxy quinine derivatives S3 (5 mol%) [24]. Various aliphatic and aromatic ketones were smoothly converted to the desired tertiary carbinols SS in high yields and ee values (up to 99%) without any significant electronic or steric demands (Scheme 8.17). The difluoroketones 56 proved just as useful as substrates (Scheme 8.18). Of note, the parent alkaloid, quinine, as a catalyst did not give rise to any asymmetric induction. [Pg.208]

By employing the primary amine catalyst 160, Zhong and coworkers developed the tandem Michael-Henry reaction of ketones with nitroalkenes to provide highly functionalized chiral hexanes and pentanes with high diastereo- and enantioselec-tivity [49]. The selected examples depicted in Scheme 9.56 show that, in the presence of 160 (10-15 mol%), various Michael donors and nitroalkenes smoothly underwent the tandem reaction with almost quantitative yield and extremely high enantios-electivity with the complete diastereoselectivity of the products. Further details of this reaction can be seen in Section 10.4. [Pg.282]

The Henry reaction or the nitroaldol is a classical reaction where the a-anion of an alkyinitro compound reacts with an aldehyde or ketone to form a p-nitroalcohol adduct. Over the decades, the Henry reaction has been used to synthesize natural products and pharmaceutical intermediates. In addition, asyimnetric catalysis has allowed this venerable reaction to contribute to a plethora of stereoselective aldol condensations. Reviews (a) Ballini, R. Bosica, G. Fiorini, D. Palmieri, A. Front. Nat. Prod. Chem. 2005, 1, 37-41. (b) Ono, N. In The Nitro Group in Organic Synthesis Wiley-VCH Weinheim, 2001 Chapter 3 The Nitro-Aldol (Henry) Reaction, pp. 30-69. (c) Luzzio, F. A. Tetrahedron 2001, 57, 915-945. [Pg.148]

Bixchler Napiralski, Dieckmann cyclization [15], Suzuki reaction [48], Wittig reaction, ozonolysis, condensation, esterification, nucleophilic substitution [49], Henry reaction, 1.3-dipolar cyclo-addition, electrophilic addition [50], oxidation chloride -> aldehyde [50], sulfide —> sulfone [51], alcohol —> ketone, Arbuzov reaction (phosphine-phosphorox-ide) [52], reduction hydration [45], ester -> alcohol [49, 53]... [Pg.175]


See other pages where Ketones Henry reaction is mentioned: [Pg.626]    [Pg.530]    [Pg.626]    [Pg.530]    [Pg.31]    [Pg.36]    [Pg.46]    [Pg.129]    [Pg.169]    [Pg.271]    [Pg.249]    [Pg.77]    [Pg.305]    [Pg.126]    [Pg.310]    [Pg.202]    [Pg.524]    [Pg.526]    [Pg.206]    [Pg.323]    [Pg.324]    [Pg.326]   
See also in sourсe #XX -- [ Pg.1357 ]




SEARCH



Henry reaction

© 2024 chempedia.info