Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ketones enol ether hydrolysis

This transformation, referred to as the 2-oxonia-Cope/Prins cascade has been successfully utilized to prepare, quite efficiently, the C18-C25 segment of lasonolide a sponge metabolite with potent activity against A-549 human lung carcinoma. In contrast to the previous example, the resulting oxocarbenium generated from the oxonia-Cope rearrangement of 188 is trapped by the enol ether, hydrolysis of whieh results in ketone 189. [Pg.118]

Yet another example of a jS-carboline elaboration of the yohimbine skeleton is found in the work of Danishefsky (Scheme 3.72) (120). Diels-Alder reaction of jS-carbolines 255 or 415 with the readily prepared diene 416 afforded pentacyclic lactams 417 or 418, respectively. Amide reduction of 417 followed by enol ether hydrolysis afforded known yohimbane ketone 419 (114, 121). Attempts to isomerize the 7i-bond in 419 to give the a,j8-unsatu-rated ketone 401 were unsuccessful. Nevertheless, this chemistry demonstrates how Diels-Alder reactions of jS-carboline derivatives can be used to construct the pentacyclic skeleton of the yohimbines in an eflScient fashion. [Pg.281]

The oxidation of the cyclic enol ether 93 in MeOH affords the methyl ester 95 by hydrolysis of the ketene acetal 94 formed initially by regioselective attack of the methoxy group at the anomeric carbon, rather than the a-alkoxy ketone[35]. Similarly, the double bond of the furan part in khellin (96) is converted ino the ester 98 via the ketene acetal 97[l23],... [Pg.34]

Addition of a hydroxy group to alkynes to form enol ethers is possible with Pd(II). Enol ether formation and its hydrolysis mean the hydration of alkynes to ketones. The 5-hydroxyalkyne 249 was converted into the cyclic enol ether 250[124], Stereoselective enol ether formation was applied to the synthesis of prostacyclin[131]. Treatment of the 4-alkynol 251 with a stoichiometric amount of PdCl2, followed by hydrogenolysis with formic acid, gives the cyclic enol ether 253. Alkoxypalladation to give 252 is trans addition, because the Z E ratio of the alkene 253 was 33 1. [Pg.500]

A carbonyl group cannot be protected as its ethylene ketal during the Birch reduction of an aromatic phenolic ether if one desires to regenerate the ketone and to retain the 1,4-dihydroaromatic system, since an enol ether is hydrolyzed by acid more rapidly than is an ethylene ketal. 1,4-Dihydro-estrone 3-methyl ether is usually prepared by the Birch reduction of estradiol 3-methyl ether followed by Oppenauer oxidation to reform the C-17 carbonyl function. However, the C-17 carbonyl group may be protected as its diethyl ketal and, following a Birch reduction of the A-ring, this ketal function may be hydrolyzed in preference to the 3-enol ether, provided carefully controlled conditions are employed. Conditions for such a selective hydrolysis are illustrated in Procedure 4. [Pg.11]

The crude ketal from the Birch reduction is dissolved in a mixture of 700 ml ethyl acetate, 1260 ml absolute ethanol and 31.5 ml water. To this solution is added 198 ml of 0.01 Mp-toluenesulfonic acid in absolute ethanol. (Methanol cannot be substituted for the ethanol nor can denatured ethanol containing methanol be used. In the presence of methanol, the diethyl ketal forms the mixed methyl ethyl ketal at C-17 and this mixed ketal hydrolyzes at a much slower rate than does the diethyl ketal.) The mixture is stirred at room temperature under nitrogen for 10 min and 56 ml of 10% potassium bicarbonate solution is added to neutralize the toluenesulfonic acid. The organic solvents are removed in a rotary vacuum evaporator and water is added as the organic solvents distill. When all of the organic solvents have been distilled, the granular precipitate of 1,4-dihydroestrone 3- methyl ether is collected on a filter and washed well with cold water. The solid is sucked dry and is dissolved in 800 ml of methyl ethyl ketone. To this solution is added 1600 ml of 1 1 methanol-water mixture and the resulting mixture is cooled in an ice bath for 1 hr. The solid is collected, rinsed with cold methanol-water (1 1), air-dried, and finally dried in a vacuum oven at 60° yield, 71.5 g (81 % based on estrone methyl ether actually carried into the Birch reduction as the ketal) mp 139-141°, reported mp 141-141.5°. The material has an enol ether assay of 99%, a residual aromatics content of 0.6% and a 19-norandrost-5(10)-ene-3,17-dione content of 0.5% (from hydrolysis of the 3-enol ether). It contains less than 0.1 % of 17-ol and only a trace of ketal formed by addition of ethanol to the 3-enol ether. [Pg.52]

A -dien-3-ol ethers gives rise to 6-substituted A" -3-ketones. 6-Hydroxy-A" -3-ketones can be obtained also by autooxidation.Structural changes in the steroid molecule may strongly affect the stability of 3-alkyl-A -ethers. Thus 11 j5-hydroxyl and 9a-fluorine substituents greatly increase the lability of the enol ether/ while halogens at C-6 stabilize this system to autooxidation and acid hydrolysis. [Pg.386]

Hydrolysis of the enamine, ketal or enol ether function results in the formation of 4-methyl-A -3-ketones (23). [Pg.59]

Oppenauer oxidation of the enol ether (34) affords the corresponding 17 ketone (37) (the enol ether is stable to the basic oxidation conditions). This ketone affords the corresponding 17a-ethynyl compound on reaction with metal acetylides. Hydrolysis of the enol ether under mild conditions leads directly... [Pg.164]

The insertion of alkynes into a chromium-carbon double bond is not restricted to Fischer alkenylcarbene complexes. Numerous transformations of this kind have been performed with simple alkylcarbene complexes, from which unstable a,/J-unsaturated carbene complexes were formed in situ, and in turn underwent further reactions in several different ways. For example, reaction of the 1-me-thoxyethylidene complex 6a with the conjugated enyne-ketimines and -ketones 131 afforded pyrrole [92] and furan 134 derivatives [93], respectively. The alkyne-inserted intermediate 132 apparently undergoes 671-electrocyclization and reductive elimination to afford enol ether 133, which yields the cycloaddition product 134 via a subsequent hydrolysis (Scheme 28). This transformation also demonstrates that Fischer carbene complexes are highly selective in their reactivity toward alkynes in the presence of other multiple bonds (Table 6). [Pg.44]

The acid-catalyzed hydrolysis of enol esters (RCOOCR =CR) can take place either by the normal Aac2 mechanism or by a mechanism involving initial protonation on the double-bond carbon, similar to the mechanism for the hydrolysis of enol ethers given in 10-6, ° depending on reaction conditions. In either case, the products are the carboxylic acid RCOOH and the aldehyde or ketone R2" CHCOR. ... [Pg.474]

The addition of water to enol ethers causes hydrolysis to aldehydes or ketones (10-6). Ketenes add water to give carboxylic acids in a reaction catalyzed by acids " ... [Pg.994]

The Simmons-Smith reaction has been used as the basis of a method for the indirect a methylation of a ketone. The ketone (illustrated for cyclohexanone) is first converted to an enol ether, an enamine (16-12) or silyl enol ether (12-22) and cyclopropanation via the Simmons-Smith reaction is followed by hydrolysis to give a methylated ketone. A related procedure using diethylzinc and diiodomethane allows ketones to be chain extended by one carbon. In another variation, phenols can be ortho methylated in one laboratory step, by treatment with Et2Zn and... [Pg.1089]

Aldehydes and ketones RCOR react with oc-methoxyvinyllithium CH2= C(Li)OMe to give hydroxy enol ethers RR C(OH)C(OMe)=CH2, which are easily hydrolyzed to acyloins, RR C(OH)COMe. this reaction, the CH2=C(Li)OMe is a synthon for the unavailable H3C—C=0. The reagent also reacts with esters RCOOR to give RC(OH)(COMe=CH2)2- A synthon for the Ph—C=0 ion is PhC(CN)OSiMe3, which adds to aldehydes and ketones RCOR to give, after hydrolysis, the a-hydroxy ketones, RR C(OH)-COPh. °... [Pg.1227]

The enol ethers of P-dicarbonyl compounds are reduced to a, 3-unsaturated ketones by LiAlH4, followed by hydrolysis.115 Reduction stops at the allylic alcohol, but subsequent acid hydrolysis of the enol ether and dehydration leads to the isolated product. This reaction is a useful method for synthesis of substituted cyclohexenones. [Pg.407]

Danishefsky s diene).46 The two donor substituents provide strong regiochemical control. The D-A adducts are trimethylsilyl enol ethers that can be readily hydrolyzed to ketones. The (3-methoxy group is often eliminated during hydrolysis, resulting in formation of cyclohexenones. [Pg.488]

That molecule is then subjected to the standard carbonyl reduction, Birch reaction, oxidation, ethynylation and, finally, hydrolysis sequence (see 50 to 53). Hydrolysis of the enol ether under more strenuous conditions than was employed with 53 gives the conjugated ketone 65. The carbonyl group is then reduced to afford the corresponding 3p-alcohol (66). Exhaustive acetylation affords the potent oral progestin methynodiol diacetate (67). [Pg.149]

Trimethylsilylation of enolizable carbonyl compounds and alcohols has also been accomplished by the fluoride ion promoted reaction with hexamethyldisilane and ethyl trimethylsilylacetate [48, 49], with high stereospecificity giving Z-enol ethers from ketones [50]. l-Trimethylsilyl-(l-trimethylsilyloxy)alkanes, produced from the reaction of aldehydes with hexamethyldisilane, undergo acid-catalysed hydrolysis during work up to yield the trimethylsilylcarbinols [51]. In the case of aryl aldehydes, the initially formed trimethylsiloxy carbanion produces the pinacol (Scheme 3.1). [Pg.77]

The metalation of vinyl ethers, the reaction of a-lithiated vinyl ethers obtained thereby with electrophiles and the subsequent hydrolysis represent a simple and efficient method for carbonyl umpolung. Thus, lithiated methyl vinyl ether 56 and ethyl vinyl ether 54, available by deprotonation with t- or n-butyllithium, readily react with aldehydes, ketones and alkyl halides. When the enol ether moiety of the adducts formed in this way is submitted to an acid hydrolysis, methyl ketones are obtained as shown in equations 72 and 73 . Thus, the lithiated ethers 56 and 54 function as an acetaldehyde d synthon 177. The reactivity of a-metalated vinyl ethers has been reviewed recently . [Pg.885]

The reaction mechanism proposed for the addition of organostannanes [29] is similar to that for organoboronic acids. An example of the reaction of methyl vinyl ketone 42 is outlined in Scheme 3.15. The catalytic cycle involves a cationic rhodium complex G, phenylrhodium H, and oxa-n -allylrhodium I. Stannyl enol ether 44 is formed by the reaction of oxa-n -allylrhodium I with Me3SnBF4, which upon hydrolysis gives the ketone 43. The lower yields in the absence of water were explained by the further reaction of 44 with methyl vinyl ketone 42. The rapid hydrolysis with water may prevent such oligomerization. [Pg.68]

Oppenauer oxidation of the enol ether (34) affords the corresponding 17 ketone (37) (the enol ether is stable to the basic oxidation conditions). This ketone affords the corresponding 17a-ethynyl compound on reaction with metal acetylides. Hydrolysis of the enol ether under mild conditions leads directly to ethynodrel (39), an orally active progestin. This is the progestational component of the first oral contraceptive to be offered for sale. Treatment of the ethynyl enol ether with strong acid leads to yet another oral progestin employed as a contraceptive, norethindrone (40). ° In practice these and all other so-called combination contraceptives are mixtures of 1-2% mestranol... [Pg.183]


See other pages where Ketones enol ether hydrolysis is mentioned: [Pg.83]    [Pg.637]    [Pg.166]    [Pg.419]    [Pg.83]    [Pg.103]    [Pg.384]    [Pg.502]    [Pg.210]    [Pg.439]    [Pg.87]    [Pg.141]    [Pg.164]    [Pg.291]    [Pg.61]    [Pg.183]    [Pg.743]    [Pg.32]    [Pg.49]    [Pg.232]    [Pg.146]    [Pg.147]    [Pg.233]    [Pg.6]    [Pg.51]    [Pg.8]    [Pg.121]    [Pg.183]   
See also in sourсe #XX -- [ Pg.149 ]




SEARCH



Enol ethers hydrolysis

Enol hydrolysis

Enol ketones

Enols ketonization

Ethers hydrolysis

Ethers ketones

Ketone enolate

Ketone enolates

Ketone hydrolysis

Ketones enolization

Ketonic hydrolysis

Ketonization-enolization

© 2024 chempedia.info