Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ketenes compounds

The interaction of butadiynediyl dimetal complexes [Fp -C -CsC-M, Fp =FeCp (CO)2, M= Fp, Rp, SiMea, Rp= RuCp(CO)2] with diiron nonacarbonyl, Fe2(CO)9, results in the formation of a mixture of products, as is also observed in the case of their interaction with organic acetylenes. Interesting polymetallic complexes, propargylidene-ketene compounds, zwitterionic cluster compounds, and pa-p -propargylidene-cyclobutene compoimds were isolated from the reaction mixtures and successfully characterized. The product distributions were found to be dependent on the metal fragment (M) at the other end of the C4 rod. The results of the reaction are described... [Pg.341]

The reactions of the butadiynediyldimetal(Fe, Ru) complexes with Fe2(CO)ci at room temperature afforded mixtures of products, from which three types of products, viz. the ps-acetylide cluster compound 4, the pj-ti -propargylidene-ketene compound 5 and zwitterionic cluster compound 6, were isolated. While the reaction with an excess amount of Co2(CO)g results in addition to the sterically congested Fp -C=C part [6]. The distributions of the products were dependent on the metal fragments situated at the other end of the conjugated carbon rod. The cluster compounds so obtained were characterized by spectroscopic and... [Pg.342]

The overall reaction is reminiscent of the Wolff rearrangement of a-diazo carbonyl compounds which gives ketenes. Compounds 6 formally represent their phosphorus analogues and are sometimes also designated as phosphenes 11... [Pg.77]

Ketenes - Compounds in which a carbonyl group is connected by a double bond to an alkylidene group R C=C=0. [5]... [Pg.108]

Scheme 5.5 Decomposition of diazo and ketene compounds to give a carbene. Scheme 5.5 Decomposition of diazo and ketene compounds to give a carbene.
Two papers reported studies of photolytically generated carbenes. Decomposition of a-diazo ketones was studied to discover the lifetime of the intermediate carbonyl carbene it was shown to be less than 20 ns. Changes in UV absorptions for diazo-and product-ketene compounds were used to acquire the data. Rate constants for... [Pg.273]

The formation of a stable (rj -C.G) ketene compound [(ri -CsHs) (C0)2Fe (CH2=C=0)][PF6 ] by carbonylation of an iron-methylidene complex ](ri -C5H5)(CO)2Fe+=CH2)][PF6 ] at 25 °C and 6 bar carbon monoxide pressure was described. Carbon-13 labeling study has shown that the electrophilic methylidene ligand picks up exogenous carbon monoxide and not a coordinated one [54]. [Pg.207]

Formation of a stable (t) -C,C) ketene compound (C5H5)Fe(CO)2(CH2CO)+PF6 by carbonylation of an iron-methylidene complex. A novel entry into CO-derived C2 chemistry. Journal of the American Chemical Society, 105, 5926-5928. [Pg.219]

C (decomp.). Prepared by reacting ketene with methanol under carefully controlled conditions in the presence of anhydrous zinc chloride. This highly reactive compound has many synthetic uses, chiefly for adding the... [Pg.330]

Tetramethylallene, b.p. 86 C/760 mmHg, Ojj 1.4405, was obtained in 80% yield. The residue in the reaction flask of the ketene apparatus weighed about 15 g and consisted mainly of starting compound. [Pg.142]

Chemistry of Ketenes, Allenes and Related Compounds", S. Patai (ed.), John Wiley and Sons, Chichester, New York, Brisbane, Toronto, (1980). lOe. H. Hopf, "The Preparation of Allenes and Cumulenes", Chapter 20 in "The Chemistry of Ketenes, Allenes and Related Compounds", S. Patai (ed.), John Wiley and Sons, Chichester, New York, Brisbane, Toronto, (1980). [Pg.271]

In the presence of a double bond at a suitable position, the CO insertion is followed by alkene insertion. In the intramolecular reaction of 552, different products, 553 and 554, are obtained by the use of diflerent catalytic spe-cies[408,409]. Pd(dba)2 in the absence of Ph,P affords 554. PdCl2(Ph3P)3 affords the spiro p-keto ester 553. The carbonylation of o-methallylbenzyl chloride (555) produced the benzoannulated enol lactone 556 by CO, alkene. and CO insertions. In addition, the cyclobutanone derivative 558 was obtained as a byproduct via the cycloaddition of the ketene intermediate 557[4I0]. Another type of intramolecular enone formation is used for the formation of the heterocyclic compounds 559[4l I]. The carbonylation of the I-iodo-1,4-diene 560 produces the cyclopentenone 561 by CO. alkene. and CO insertions[409,4l2]. [Pg.204]

Ketenes. Derivatives of the compound ketene, CH2=C=0, are named by substitutive nomenclature. For example, C4Hc,CH=C=0 is butyl ketene. An acyl derivative, such as CH3CH2—CO—CH2CH=C=0, may be named as a polyketone, l-hexene-l,4-dione. Bisketene is used for two to avoid ambiguity with diketene (dimeric ketene). [Pg.32]

Anhydride manufactured by acetic acid pyrolysis sometimes contains ketene polymers, eg, acetylacetone, diketene, dehydroacetic acid, and particulate carbon, or soot, is occasionally encountered. Polymers of aHene, or its equilibrium mixture, methylacetylene—aHene, are reactive and refractory impurities, which if exposed to air, slowly autoxidize to dangerous peroxidic compounds. [Pg.79]

The first synthetic route for isocyanates was reported in 1848 (10,11)- Subsequent efforts by Hofmann, Curtius, and Hentschel pioneered alternative synthetic approaches (12). These efforts highlighted the phosgene—amine approach. Staudinger presented the stmctural similarities between isocyanates and ketenes and stimulated interest in this class of compounds (13). However, it was not until 1945, when the world was pressed for an alternative to natural mbber, that synthetic routes to isocyanates became an area of great importance. Several excellent review articles covering the synthesis and chemistry of isocyanates have been presented (1 9). [Pg.447]

Ketenes are oxo compounds with cumulated carbonyl and carbon—carbon double bonds of the general stmcture R R2C—C—O, where and R2 may be any combination of hydrogen, alkyl, aryl, acyl, halogen, and many other functional groups. Ketenes with R = sometimes called aldoketenes,... [Pg.473]

The chemistry of ketenes is dominated by their high reactivity most of them are not stable under normal conditions, many exist only as transient Species. Nucleophilic attack at the j -carbon, [2 + 2] cycloadditions, and ketene iasertion iato single bonds are the most important and widely used reactions of such compounds. [Pg.473]

Ketenes and related compounds have been reviewed extensively (1 9). For the synthesis and synthetic uses of conjugated ketenes see Reference 10. Ketenes with three or more cumulated double bonds have been prepared (11,12). The best known is carbon suboxide [504-64-3] 3 2 preparative uses and has been reviewed (13—16). Thioketenes (17,18), ketenimines (19—21), and their dimers show interesting reactivity, but they have not achieved iadustrial importance to date. [Pg.473]

Simple olefins do not usually add well to ketenes except to ketoketenes and halogenated ketenes. Mild Lewis acids as well as bases often increase the rate of the cyclo addition. The cycloaddition of ketenes to acetylenes yields cyclobutenones. The cycloaddition of ketenes to aldehydes and ketones yields oxetanones. The reaction can also be base-cataly2ed if the reactant contains electron-poor carbonyl bonds. Optically active bases lead to chiral lactones (41—43). The dimerization of the ketene itself is the main competing reaction. This process precludes the parent compound ketene from many [2 + 2] cyclo additions. Intramolecular cycloaddition reactions of ketenes are known and have been reviewed (7). [Pg.474]

Ketenes can react in several ways with organometaUic compounds and complexes. They can add as ligands to coordinated metals forming stable ketene, ketenyl, and ketenyfldene complexes. Ketenes can be inserted into metal—hydride, metal—alkyl, metal—OR, and metal—NR2 bonds, react with metal—oxide complexes, and with coordinated Hgands. This chemistry has been reviewed (9,51). [Pg.475]

Thioketenes can be prepared in several ways, from carboxyHc acid chlorides by thionation with phosphoms pentasulfide [1314-80-3] 2 5 ketene dithioacetals by -elimination, from l,2,3-thiadia2oles with flash pyrolysis, and from alkynyl sulfides (thioacetylenes). The dimeri2ation of thioketenes to 2,4-bis(alkyHdene)-l,3-dithietane compounds occurs quickly. They can be cleaved back pyrolyticaHy (63). For a review see Reference 18. [Pg.476]

Uses. The lowest member of this class, ketene itself, is a powerful acetylating agent, reacting with compounds containing a labile hydrogen atom to give acetyl derivatives. This reaction is used only when the standard acetylation methods with acetic anhydride or acetyl chloride [75-36-5] do not work weU. Most of the ketene produced worldwide is used in the production of acetic anhydride. Acetic anhydride is prepared from the reaction of ketene and acetic acid. [Pg.476]

S. Patai, ed.. The Chemistry of Ketenes, Mllenes and Kelated Compounds, parts 1 and 2, John Wiley Sons, Inc., New York, 1980. [Pg.482]

Such copolymers of oxygen have been prepared from styrene, a-methylstyrene, indene, ketenes, butadiene, isoprene, l,l-diphen5iethylene, methyl methacrjiate, methyl acrylate, acrylonitrile, and vinyl chloride (44,66,109). 1,3-Dienes, such as butadiene, yield randomly distributed 1,2- and 1,4-copolymers. Oxygen pressure and olefin stmcture are important factors in these reactions for example, other products, eg, carbonyl compounds, epoxides, etc, can form at low oxygen pressures. Polymers possessing dialkyl peroxide moieties in the polymer backbone have also been prepared by base-catalyzed condensations of di(hydroxy-/ f2 -alkyl) peroxides with dibasic acid chlorides or bis(chloroformates) (110). [Pg.110]

Carbonyl Compounds. Cychc ketals and acetals (dioxolanes) are produced from reaction of propylene oxide with ketones and aldehydes, respectively. Suitable catalysts iaclude stannic chloride, quaternary ammonium salts, glycol sulphites, and molybdenum acetyl acetonate or naphthenate (89—91). Lactones come from Ph4Sbl-cataly2ed reaction with ketenes (92). [Pg.135]

Union Carbide abandoned the ketene—crotonaldehyde route in 1953 in favor of the oxidation of 2,4-hexadienal made by acetaldehyde condensation. A silver compound used as the catalyst prevented peroxidation of the ethylenic bonds (39,40). Thein plant operated until 1970. [Pg.283]


See other pages where Ketenes compounds is mentioned: [Pg.343]    [Pg.86]    [Pg.313]    [Pg.343]    [Pg.86]    [Pg.313]    [Pg.164]    [Pg.231]    [Pg.1119]    [Pg.271]    [Pg.93]    [Pg.134]    [Pg.473]    [Pg.474]    [Pg.476]    [Pg.103]    [Pg.159]    [Pg.41]    [Pg.70]   


SEARCH



Diazo compounds, cycloaddition with ketenes

Ketene aminals compounds

Ketenes carbonyl compound reaction

Ketenes reaction with carbonyl compounds

© 2024 chempedia.info