Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Jetting viscosity

A resin or binder is required to impart adhesion, and physical and chemical resistance to the image so that it will not scratch or wipe off. The resin may also be used to build up viscosity for those print heads that require a higher jetting viscosity. In order for the print head to function reliably, the resin should be able to redissolve in the ink. If the resin is no longer soluble in the ink when dried, there is a large risk of plugged nozzles. This requirement must be balanced with the requirement to make the printed surface scratch and chemical resistant. [Pg.156]

Fluid viscosity and volume to be mixed are the most significant factors. Propellers viscosity <3000 mPa-s volumes <750 m Turbines and paddles viscosity <50,000 mPa-s volumes <75 m Liquid jets viscosity <1000 mPa s volumes >750 m Air agitation viscosity <1000 mPa-s volumes >750 mT Anchors viscosity <100,000 mPa-s Re <10,000 volumes <30 mT Kneaders viscosity 4,000 to 1.5 x 10 mPa s volumes 3 to 75 m Roll mills viscosity 10 to 200,000 mPa s volumes 60 to 450 m For viscosity >10 consider extruders, Banbury mixers, and kneaders. Paddle reel/stator-rotor gentle mechanical mixing for coagulation, viscosity <20 mPa s volumes large. Motionless mixers viscosity ratio <100,000 1 continuous and constant flow rates residence times <30 min and flow rate ratio of <100 1. Other related sections are size reduction (Sections 16.11.8.1 and 16.11.8.3), reactors (Section 16.11.6.10), and heat transfer (Section 16.11.3.5). [Pg.1427]

In a typical commercial dry jet-wet spinning process, PPT polymer of inherent viscosity 6.0 dL/g is added to 99.7% sulfuric acid in a water-jacketed commercial mixer in a ratio of 46 g of polymer to 100 mL of acid. The mixture is sealed in a vacuum of 68.5—76 mL of mercury. Mixing takes place for 2 h... [Pg.65]

The polymerization is carried out at temperatures of 0—80°C in 1—5 h at a soHds concentration of 6—12%. The polymerization is terminated by neutralizing agents such as calcium hydroxide, calcium oxide, calcium carbonate, or lithium hydroxide. Inherent viscosities of 2-4 dL/g are obtained at 3,4 -dianiinodiphenyl ether contents of 35—50 mol %. Because of the introduction of nonlinearity into the PPT chain by the inclusion of 3,4 -dianiinodiphenyl ether kinks, the copolymer shows improved tractabiUty and may be wet or dry jet-wet spun from the polymerization solvent. The fibers are best coagulated in an aqueous equiUbrium bath containing less than 50 vol % of polymerization solvent and from 35 to 50% of calcium chloride or magnesium chloride. [Pg.66]

Lubricants. Petroleum lubricants continue to be the mainstay for automotive, industrial, and process lubricants. Synthetic oils are used extensively in industry and for jet engines they, of course, are made from hydrocarbons. Since the viscosity index (a measure of the viscosity behavior of a lubricant with change in temperature) of lube oil fractions from different cmdes may vary from +140 to as low as —300, additional refining steps are needed. To improve the viscosity index (VI), lube oil fractions are subjected to solvent extraction, solvent dewaxing, solvent deasphalting, and hydrogenation. Furthermore, automotive lube oils typically contain about 12—14% additives. These additives maybe oxidation inhibitors to prevent formation of gum and varnish, corrosion inhibitors, or detergent dispersants, and viscosity index improvers. The United States consumption of lubricants is shown in Table 7. [Pg.367]

Phloroglucinol is Hsted in the Colourindex as Cl Developer 19. It is particularly valuable in the dyeing of acetate fiber but also has been used as a coupler for azoic colors in viscose, Odon, cotton (qv), rayon, or nylon fibers, or in union fabrics containing these fibers (157). For example, cellulose acetate fabric is treated with an aromatic amine such as (9-dianisidine or a disperse dye such as A-hydroxyphenylazo-2-naphthylamine and the amine diazotizes on the fiber the fabric is then rinsed, freed of excess nitrite, and the azo color is developed in a phloroglucinol bath at pH 5—7. Depending on the diazo precursor used, intense blue to jet-black shades can be obtained with excellent light-, bleach-, and mbfastness. [Pg.384]

The principal physical properties influencing ink performance ate surface tension and viscosity. High surface tension is desired for good droplet formation and capillary refill in dtop-on-demand ink jet. Low viscosity is desired because less energy is required to pump and eject ink. Conductivity is also an important parameter. Continuous ink-jet inks must have some conductivity to allow for charging. Low conductivity is generally preferred for impulse, particularly thermal ink jet, because excess ions can cause corrosion of the printhead. [Pg.53]

The principal parameters affecting the size of droplets produced by twin-fluid atomizers have also been discussed (34). These parameters include Hquid viscosity, surface tension, initial jet diameter (or film thickness), air density, relative velocity, and air—Hquid ratio. However, these parameters may have an insignificant effect on droplet size if atomization occurs very rapidly near the atomizer exit. [Pg.333]

D = diameter of droplet Dj = diameter of jet Pe = viscosity of liqi lid p = density of hquid <7 = surface tension of liquid... [Pg.1408]

Walters, W.P., Influence of Material Viscosity on the Theory of Shaped-Charge Jet Formation, US Army Ballistic Research Laboratory Memorandum Report No. ARBRL-MR-02941, Aberdeen Proving Ground, MD, 43 pp., August 1979. [Pg.369]

Figure 2-45. Absolute viscosity of air. By permission. Standards for Steam Jet Ejectors, 3rd Ed., Heat Exchange Institute, 1956 [54] also. Standards for Steam Jet Vacuum Systems, 4th Ed., 1988 [58]. Figure 2-45. Absolute viscosity of air. By permission. Standards for Steam Jet Ejectors, 3rd Ed., Heat Exchange Institute, 1956 [54] also. Standards for Steam Jet Vacuum Systems, 4th Ed., 1988 [58].
Fig. 22. Schematic diagram of the opposite jets device with some of the associated streamlines (the x marks the location of the stagnation point). It has been determined that a ratio of d/(2 r0) w 1 — 1.4 constitutes the optimum geometry for extensional viscosity measurements [104]... Fig. 22. Schematic diagram of the opposite jets device with some of the associated streamlines (the x marks the location of the stagnation point). It has been determined that a ratio of d/(2 r0) w 1 — 1.4 constitutes the optimum geometry for extensional viscosity measurements [104]...

See other pages where Jetting viscosity is mentioned: [Pg.66]    [Pg.282]    [Pg.338]    [Pg.168]    [Pg.66]    [Pg.282]    [Pg.338]    [Pg.168]    [Pg.216]    [Pg.820]    [Pg.854]    [Pg.347]    [Pg.348]    [Pg.350]    [Pg.353]    [Pg.63]    [Pg.98]    [Pg.66]    [Pg.149]    [Pg.245]    [Pg.396]    [Pg.543]    [Pg.52]    [Pg.192]    [Pg.487]    [Pg.410]    [Pg.415]    [Pg.551]    [Pg.552]    [Pg.552]    [Pg.440]    [Pg.110]    [Pg.488]    [Pg.226]    [Pg.115]    [Pg.177]    [Pg.154]    [Pg.75]    [Pg.247]    [Pg.11]   
See also in sourсe #XX -- [ Pg.162 ]




SEARCH



© 2024 chempedia.info