Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isoxazolines, dipolarophiles

Few reactions of sulfonylfuroxans with olefins have been reported. Depending on the substituents at the furoxan ring, nature of dipolarophile, and temperature, different types of products may be obtained. It is relatively simple to cyclore-vert disulfonylfuroxans to a-sulfonyl nitrile oxides on thermolysis (81TL3371, 85T727). These nitrile oxides were trapped by dipolarophiles to yield sulfonyl-substituted isoxazole derivatives. For example, 3,4-bis(phenylsulfonyl)furoxan reacts with an excess of styrene in xylene under reflux to afford the corresponding isoxazoline 290 (Scheme 189). [Pg.161]

Nitronates derived from primary nitroalkanes can be regarded as a synthetic equivalent of nitrile oxides since the elimination of an alcohol molecule from nitronates adds one higher oxidation level leading to nitrile oxides. This direct / -elimination of nitronates is known to be facilitated in the presence of a Lewis acid or a base catalyst [66, 72, 73]. On the other hand, cycloaddition reactions of nitronates to alkene dipolarophiles produce N-alkoxy-substituted isoxazolidines as cycloadducts. Under acid-catalyzed conditions, these isoxazolidines can be transformed into 2-isoxazolines through a ready / -elimination, and 2-isoxazolines correspond to the cycloadducts of nitrile oxide cycloadditions to alkenes [74]. [Pg.272]

The reaction of the a-bromo aldoxime 52e (R = R = Me) with unsaturated alcohols has been extended to the heterocyclic systems furfuryl alcohols and 2-thiophene methanol [29b]. The furanyl and thiophenyl oximes 63a-c were treated with NaOCl and the resulting heterocyclic nitrile oxides were found to undergo spontaneous intramolecular dipolar cycloaddition to produce the unsaturated tricyclic isoxazolines 64a-c in high yield (Eq. 5). In these cases, the heterocyclic ring acts as the dipolarophile with one of the double bonds adding to the nitrile oxide [30]. [Pg.10]

Nitrones, reactive 1,3-dipoles, react with alkenes and alkynes to form isoxazolidines and isoxazolines, respectively. With monosubstituted olefinic dipolarophiles, 5-substituted isoxazolidines are generally formed predominantly however, with olefins bearing strongly electron-withdrawing groups, 4-substituted derivatives may also be formed.631... [Pg.250]

New applications of nitrile oxide 1,3-DC have been reported. Soluble, single-wall carbon nanotubes (SWNT) 32 functionalized with pentyl esters at the tips and pyridyl isoxazoline rings along the walls were prepared using pentyl ester-SWNT as dipolarophile. The complex... [Pg.291]

Individual aspects of nitrile oxide cycloaddition reactions were the subjects of some reviews (161 — 164). These aspects are as follows preparation of 5-hetero-substituted 4-methylene-4,5-dihydroisoxazoles by nitrile oxide cycloadditions to properly chosen dipolarophiles and reactivity of these isoxazolines (161), 1,3-dipolar cycloaddition reactions of isothiazol-3(2//)-one 1,1-dioxides, 3-alkoxy- and 3-(dialkylamino)isothiazole 1,1-dioxides with nitrile oxides (162), preparation of 4,5-dihydroisoxazoles via cycloaddition reactions of nitrile oxides with alkenes and subsequent conversion to a, 3-unsaturated ketones (163), and [2 + 3] cycloaddition reactions of nitroalkenes with aromatic nitrile oxides (164). [Pg.21]

Heterocycles Both non-aromatic unsaturated heterocycles and heteroaromatic compounds are able to play the role of ethene dipolarophiles in reactions with nitrile oxides. 1,3-Dipolar cycloadditions of various unsaturated oxygen heterocycles are well documented. Thus, 2-furonitrile oxide and its 5-substituted derivatives give isoxazoline adducts, for example, 90, with 2,3- and 2,5-dihydro-furan, 2,3-dihydropyran, l,3-dioxep-5-ene, its 2-methyl- and 2-phenyl-substituted derivatives, 5,6-bis(methoxycarbonyl)-7-oxabicyclo[2.2.1]hept-2-ene, and 1,4-epoxy-l,4-dihydronaphthalene. Regio- and endo-exo stereoselectivities have also been determined (259). [Pg.37]

Macrocycles containing isoxazoline or isoxazole ring systems, potential receptors in host—guest chemistry, have been prepared by multiple (double, triple or quadruple) 1,3-dipolar cycloadditions of nitrile oxides, (prepared in situ from hydroxamoyl chlorides) to bifunctional calixarenes, ethylene glycols, or silanes containing unsaturated ester or alkene moieties (453). This one-pot synthetic method has been readily extended to the preparation of different types of macrocycles such as cyclophanes, bis-calix[4]arenes and sila-macrocycles. The ring size of macrocycles can be controlled by appropriate choices of the nitrile oxide precursors and the bifunctional dipolarophiles. Multiple cycloadditive macrocy-clization is a potentially useful method for the synthesis of macrocycles. [Pg.90]

A novel class of activators for chloride conductance in the cystic fibrosis transmembrane conductance regulator protein has been identified. These 3-(2-benzy-loxyphenyl)isoxazoles and 3-(2-benzyloxyphenyl)isoxazolines have been synthesized employing the 1,3-dipolar cycloaddition of nitrile oxides with various alkene and alkyne dipolarophiles (490). [Pg.99]

Dipolar cycloadditions of ( -phenyl-/V-methylnitrone (585) to Baylis-Hillman adducts such as ( 3-hydroxy-a-methylene esters) (608-610) proceed with complete regioselectivity in good yields to afford the corresponding diastere-omeric 3,5,5-trisubstituted isoxazolines (611-613) (Scheme 2.269). Attack by the dipole in (585) from the less sterically hindered side of dipolarophiles (608-610) affords C-3/C-5 cis isoxazolidines (611a,b-613a,b) as the major products (780). [Pg.346]

In the frequency of their use in 1,3-dipolar cycloadditions to nitrones, alkynes constitute the second group of dipolarophiles after alkenes. They are of particular interest due to the fact that isoxazolines, the products of initial cycloadditions,... [Pg.367]

An interesting observation was made in the study of BNO or ArNO addition to norbornene dipolarophiles 444 and 447, which contain C = N and C = C bonds. With BNO or ArNO, the isoxazoline regioisomers 445 and 446 were unexpectedly obtained by addition to the olefinic double bond. In the case of the exo isomers 447, addition took place to both the... [Pg.455]

As part of an extensive study of the 1,3-dipolar cycloadditions of cyclic nitrones, Ali et al. (392-397) found that the reaction of the 1,4-oxazine 349 with various dipolarophiles afforded the expected isoxazolidinyloxazine adducts (Scheme 1.78) (398). In line with earlier results (399,400), oxidation of styrene-derived adduct 350 with m-CPBA facilitated N—O cleavage and further oxidation as above to afford a mixture of three compounds, an inseparable mixture of ketonitrone 351 and bicyclic hydroxylamine 352, along with aldonitrone 353 with a solvent-dependent ratio (401). These workers have prepared the analogous nitrones based on the 1,3-oxazine ring by oxidative cleavage of isoxazolidines to afford the hydroxylamine followed by a second oxidation with benzoquinone or Hg(ll) oxide (402-404). These dipoles, along with a more recently reported pyrazine nitrone (405), were aU used in successful cycloaddition reactions with alkenes. Elsewhere, the synthesis and cycloaddition reactions of related pyrazine-3-one nitrone 354 (406,407) or a benzoxazine-3-one dipolarophile 355 (408) have been reported. These workers have also reported the use of isoxazoles with an exocychc alkene in the preparation of spiro[isoxazolidine-5,4 -isoxazolines] (409). [Pg.61]

E) configuration. The dipolar cycloaddition of 141 with a silyl nitronate shows a slight increase of facial selectivity over 132 (Eq. 2.9). Because the cycloadducts are converted directly to the corresponding isoxazolines, only the facial selectivity can be determined. It is believed that the cycloaddition proceeds on the Re face of the dipolarophile due to shielding of the Si face by the auxihary. Both chiral auxiliaries can be liberated from the cycloadduct upon reduction with L-Selectride. [Pg.123]

The intramolecular cycloaddition of a silyl nitronate bearing a dipolarophilic appendage provides easy access to fused, bicyclic isoxazolidines (22). This process, in general, is very facile, and has allowed the use of unfunctionalized alkenes as dipolarophiles (Table 2.39) (106,124). Thus, a silyl nitronate bearing an allyl group will undergo the [3 + 2] cycloaddition at room temperature over 15 h to provide the corresponding isoxazoline upon acidic workup in moderate yield. [Pg.123]

The [3+2] cycloaddition of terminal alkynes has been investigated with several dipoles. These dipolarophiles are competent in the cycloaddition, however, the corresponding isoxazolines cannot be isolated. Instead, the cycloadduct undergoes spontaneous rearrangement to provide acylaziridine products (Table 2.52) (229). Disubstituted alkynes also undergo this process, however, in lower yield. This rearrangement occurs with all nitronates studied (Chart 2.3) (66,230,231). [Pg.143]

Another approach to obtain pure enantiomers of isoxazolines involves the use of chiral acrolein aminals, formed with A.A -substituted diaminodiphenylethanes (194). Thus, with this chiral imidazolidinyl auxiliary in the p-position, and with unsaturated esters serving as the dipolarophile, benzonitrile oxide afforded only one regioisomeric cycloadduct with good stereoselectivity (194) (Scheme 6.40). When the analogous A,A -dimethyl auxiliary was chosen, excellent stereoselectivity was accompanied by poor regioselectivity (194). [Pg.398]

This chapter deals mainly with the 1,3-dipolar cycloaddition reactions of three 1,3-dipoles azomethine ylides, nitrile oxides, and nitrones. These three have been relatively well investigated, and examples of external reagent-mediated stereocontrolled cycloadditions of other 1,3-dipoles are quite limited. Both nitrile oxides and nitrones are 1,3-dipoles whose cycloaddition reactions with alkene dipolarophiles produce 2-isoxazolines and isoxazolidines, their dihydro derivatives. These two heterocycles have long been used as intermediates in a variety of synthetic applications because their rich functionality. When subjected to reductive cleavage of the N—O bonds of these heterocycles, for example, important building blocks such as p-hydroxy ketones (aldols), a,p-unsaturated ketones, y-amino alcohols, and so on are produced (7-12). Stereocontrolled and/or enantiocontrolled cycloadditions of nitrones are the most widely developed (6,13). Examples of enantioselective Lewis acid catalyzed 1,3-dipolar cycloadditions are summarized by J0rgensen in Chapter 12 of this book, and will not be discussed further here. [Pg.757]

The direct cycloaddition adduct was oxidized, resulting in the hydroxylated isoxazoline product (316). Better selectivities were obtained in 1,3-dipolar cycloadditions of 204 with nitrile oxides (317,318). The 1,3-dipolar cycloadditions proceeded with concomitant loss of the boron group to give the isoxazoline products in up to 74% ee (318). The alkene 204 was also tested in reactions with nitrones. The reactions proceeded with poor yields, but high selectivities were observed in two cases (318). Gilbertson et al. (319) investigated the use of chiral ot,p-unsaturated hexacarbonyldiiron acyl complexes 205 as dipolarophiles in reactions with nitrones. Selectivities of up to >92% de were observed. The iron moiety was removed oxidatively after the cycloaddition and the thioester was hydrolyzed. [Pg.860]


See other pages where Isoxazolines, dipolarophiles is mentioned: [Pg.91]    [Pg.149]    [Pg.58]    [Pg.293]    [Pg.20]    [Pg.22]    [Pg.24]    [Pg.25]    [Pg.51]    [Pg.73]    [Pg.600]    [Pg.68]    [Pg.609]    [Pg.50]    [Pg.367]    [Pg.381]    [Pg.416]    [Pg.425]    [Pg.781]    [Pg.784]    [Pg.163]    [Pg.219]    [Pg.291]    [Pg.305]    [Pg.340]   
See also in sourсe #XX -- [ Pg.439 ]




SEARCH



Dipolarophile

Isoxazoline

Isoxazolines

© 2024 chempedia.info