Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isothermal and Isoperibol Calorimeters

To better assess heat losses, twin calorimeters have been developed that permit measurement in a differential mode. A continuous, usually linear, temperature change of calorimeter or surroundings is used in the scanning mode. The calorimetry, described in Sect. 4.3 is scanning, isoperibol twin-calorimetry, usually less precisely called differential scanning calorimetry (DSC). [Pg.307]

For measurement, the sample is heated to a constant temperature in a thermostat above the calorimeter (not shown), and then it is dropped into the calorimeter, where heat is exchanged with the block. The small change in temperature of the block is [Pg.308]

Much of the accuracy in bomb calorimetry depends upon the care taken in the construction of the auxiliary equipment of the calorimeter, also called the addenda. It must be designed such that the heat flux into or out of the measuring water is at a minimum, and the remaining flux must be amenable to a calibration. In particular, the loss due to evaporation of water must be kept to a minimum, and the energy input from the stirrer must be constant throughout the experiment. With an apparatus such as shown in Fig. 4.30 anyone can reach, with some care, a precision of 1%, but it is possible by most careful bomb calorimetry to reach an accuracy of 0.01%. [Pg.309]


Instruction Manual ofTronac Model 550 Isothermal and Isoperibol Calorimeter System. Tronac Incorporated. [Pg.258]

The isothermal and isoperibol calorimeters are well suited to measuring heat contents from which heat capacities may be subsequently derived, while the adiabatic and heat-flow calorimeters are best suited to the direct measurement of heat capacities and enthalpies of transformation. [Pg.79]

In Fig. 5.2, three different types of isothermal and isoperibol calorimeters are shown a calorimeter that makes use of the phase change for heat measurement, a calorimeter that accepts the heat from a surrounding liquid, called a... [Pg.222]

Adiabatic and Isoperibol Calorimeters.—Most calorimeters used in combustion and reaction calorimetry undergo a change of temperature when reaction takes place. If the calorimeter is surrounded by a jacket, the temperature of which is controlled to be the same as that of the calorimeter, no heat-exchange occurs between the siuroundings and the calorimeter, which is then described as adiabatic. However, if the temperature of the environment is maintained constant (in a type of calorimeter conveniently described as isoperibol and sometimes, incorrectly, as isothermal) some heat-exchange occurs between the calorimeter and its surroundings, but may be accurately determined by analysis of the temperature-time curves before and after reaction takes place, provided the reaction is of short duration (say not exceeding 15 min). With slower processes, isoperibol calorimeters are less useful, and the adiabatic principle is easier to effect and yields more accurate results. [Pg.96]

It appears therefore that during the operation of all usual calorimeters, temperature gradients are developed between the inner vessel and its surroundings. The resulting thermal head must be associated, in all cases, to heat flows. In isoperibol calorimeters, heat flows (called thermal leaks in this case) are minimized. Conversely, they must be facilitated in isothermal calorimeters. All heat-measuring devices could therefore be named heat-flow calorimeters. However, it must be noted that in isoperibol or isothermal calorimeters, the consequences of the heat flow are more easily determined than the heat flow itself. The temperature decrease... [Pg.195]

The first experiments of gas adsorption calorimetry by Favre (1854) were made with an isoperibol calorimeter. More recently, refinements were introduced by Beebe and his co-workers (1936) and by Kington and Smith (1964). Because of the uncontrolled difference between the temperature of the sample and that of the surroundings, Newton s law of cooling must be applied to correct the observed temperature rise of the sample. In consequence, any slow release of heat (over more than, say, 30 minutes), which would produce a large uncertainty in the corrective term, cannot be registered. For this reason, isoperibol calorimetry cannot be used to follow slow adsorption equilibria. However, its main drawback is that the experiment is never isothermal during each adsorption step, a temperature rise of a few kelvins is common. The corresponding desorption (or lack of adsorption) must then be taken into account and, after each step, the sample must be thermally earthed so as to start each step at the same temperature. In view of these drawbacks,... [Pg.66]

The thermal resistance R is supposed to increase from the isothermal to the isoperibol and then to the adiabatic type of calorimeter. It would probably be more correct and general to base the distinction between the adiabatic and the isoperibol calorimeters on the heat transfer (involving simultaneously the thermal conductance and the temperature difference) rather than on the value of the thermal resistance. For instance, a simple Dewar vessel calorimeter provides a very high thermal resistance between the central system and the surroundings, though it is simply an isoperibol calorimeter (called quasi-adiabatic in section 4.2.), whereas Swietoslawski s adiabatic calorimeters, which do not use any vacuum insulation, certainly provide a much lower thermal resistance [15]. [Pg.43]

Heat-flow Calorimeters.— In calorimeters of the adiabatic or isoperibol types, heat-exchange between the calorimeter and its surroundings is either eliminated or is restricted to a small, accurately determined amount. An alternative method is to transfer the heat of reaction completely to a heatsink, so that both the calorimeter and the heat-sink remain essentially isothermal and the calorimetric determination consists of measuring the heat transferred. Two main types have been employed. [Pg.99]

Names have been given to calorimeters (usually having these three components) that are operated in certain modes. In the isothermal calorimeter the temperature Tc of the calorimeter is kept equal to the temperature Ts of the surroundings and both are held constant. In the adiabatic calorimeter Tg is kept equal to T although both may change. In the isoperibol calorimeter 7 is kept constant and 7i, usually initially near 7, undergoes an excursion. In the constant heat-flow calorimeter (7 — 7i) is kept constant. [Pg.325]

The measurement of an enthalpy change is based either on the law of conservation of energy or on the Newton and Stefan-Boltzmann laws for the rate of heat transfer. In the latter case, the heat flow between a sample and a heat sink maintained at isothermal conditions is measured. Most of these isoperibol heat flux calorimeters are of the twin type with two sample chambers, each surrounded by a thermopile linking it to a constant temperature metal block or another type of heat reservoir. A reaction is initiated in one sample chamber after obtaining a stable stationary state defining the baseline from the thermopiles. The other sample chamber acts as a reference. As the reaction proceeds, the thermopile measures the temperature difference between the sample chamber and the reference cell. The rate of heat flow between the calorimeter and its surroundings is proportional to the temperature difference between the sample and the heat sink and the total heat effect is proportional to the integrated area under the calorimetric peak. A calibration is thus... [Pg.313]

The experimental data and the calculations involved in the determination of a reaction enthalpy by isoperibol flame combustion calorimetry are in many aspects similar to those described for bomb combustion calorimetry (see section 7.1) It is necessary to obtain the adiabatic temperature rise, A Tad, from a temperaturetime curve such as that in figure 7.2, to determine the energy equivalent of the calorimeter in an separate experiment and to compute the enthalpy of the isothermal calorimetric process, AI/icp, by an analogous scheme to that used in the case of equations 7.17-7.19 and A /ibp. The corrections to the standard state are, however, much less important because the pressure inside the burner vessel is very close to 0.1 MPa. [Pg.117]

The principles of titration calorimetry will now be introduced using isoperibol continuous titration calorimetry as an example. These principles, with slight modifications, can be adapted to the incremental method and to techniques based on other types of calorimeters, such as heat flow isothermal titration calorimetry. This method, which has gained increasing importance, is covered in section 11.2. [Pg.158]

The Nemst calorimeter is used for low-temperature heat capacity measurements. The sample is contained in a small metal case equipped with a heater and thermometer and is placed in an isoperibol (isothermal) jacket of large heat capacity, which in turn is surrounded by an evacuated chamber surrounded by, for example, a liquid N2 or H2 chamber (Fig. 11.77). A variant is to use an adiabatic jacket. Of course, what is measured is not Cp, but a hopefully reasonable approximation to it ... [Pg.760]

Solution calorimetry involves the measurement of heat flow when a compotmd dissolves into a solvent. There are two types of solution calorimeters, that is, isoperibol and isothermal. In the isoperibol technique, the heat change caused by the dissolution of the solute gives rise to a change in the temperature of the solution. This results in a temperature-time plot from which the heat of the solution is calculated. In contrast, in isothermal solution calorimetry (where, by definition, the temperature is maintained constant), any heat change is compensated by an equal, but opposite, energy change, which is then the heat of solution. The latest microsolution calorimeter can be used with 3-5 mg of compound. Experimentally, the sample is introduced into the equilibrated solvent system, and the heat flow is measured using a heat conduction calorimeter. [Pg.221]

It should be mentioned that calorimeters with the surroundings kept at constant temperature (thermostat) are often named isothermal calorimeters in the literature. This is, however, not correct because the sample and the sample container temperature during the reaction are not constant and furthermore may be very different from the thermostat temperature until heat has been exchanged. Such calorimeters operate under isoperibol conditions (see Section 5.2) we present them in Section 7.9. [Pg.146]

Isoperibol (quasi-isothermal) calorimeters are used in medicine and biology for determinations of the metabolic heats of organisms under various conditions (Dauncey, 1991). Here the calorimeter system (container or chamber) is large enough to accommodate one animal or person in relative comfort. The measurement principle is similar to the upper examples the container for the organism, positioned in thermostatized surroundings, is enclosed in a uniform layer or wall of a heat conductive material, and the temperature difference between the two... [Pg.181]

The requirements with regard to a calorimeter can be derived on the basis of the above analysis of the measuring problem. The necessary operating conditions have to be defined first an isothermal, isoperibol, adiabatic, or a scanning calorimeter What temperature range What heating rate Any other boundary conditions a constant pressure, constant volume, gas flow rate, and so on ... [Pg.248]

Basically, the methods consist of a variety of calorimetric methods and a few non-calorimetric methods. In calorimetry the following methods are nsed adiabatic, isoperibol, isothermal, heat condnction, drop and differential scanning calorimeters, and differential thermal analysis. Cryoscopic, vapor pressure, and enthalpy of solution methods are considered to be non-calorimetric methods. [Pg.15]


See other pages where Isothermal and Isoperibol Calorimeters is mentioned: [Pg.222]    [Pg.222]    [Pg.222]    [Pg.222]    [Pg.307]    [Pg.195]    [Pg.1903]    [Pg.102]    [Pg.337]    [Pg.339]    [Pg.97]    [Pg.124]    [Pg.328]    [Pg.18]    [Pg.346]    [Pg.95]    [Pg.236]    [Pg.758]    [Pg.154]    [Pg.63]    [Pg.1911]    [Pg.1912]    [Pg.846]    [Pg.89]    [Pg.102]    [Pg.120]    [Pg.10]    [Pg.120]    [Pg.389]   


SEARCH



Calorimeters

Isoperibolic

Isoperibolic calorimeter

Isotherm calorimeter, 3.30

Isothermal calorimeter

© 2024 chempedia.info