Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isotactic stereochemistry

The interaction may not be quite as strong as in the case of 2,1 insertion discussed above, but there will always be a tendency of the growing chain to arrive at an isotactic stereochemistry when 1,2 insertion occurs. One example of chain-end control leading to isotactic polymer was reported by Ewen [13] using Cp2TiPh2/alumoxane as the catalyst. The stereoregularity increased with lower temperatures at -45 °C the isotactic index as measured on pentads amounted to 52 %. The polymer contains stereoblocks of isotactic polymer. At 25 °C the polymerisation gives almost random 1,2 insertion and an atactic polymer is formed. [Pg.202]

Insertion of the next propene by a repeat of the previous step now starts the polymerization. Each new C-C bond is formed on the coordination sphere of the Ti atom by transformation of a n complex into a O complex. Repetition of this process leads to polymerization. We have shown the polymer with isotactic stereochemistry, and this control over the stereochemistry reflects the close proximity of the new propene molecule and the growing polymer. [Pg.1463]

Atactic polymer (Section 7 15) Polymer characterized by ran dom stereochemistry at its chirality centers An atactic polymer unlike an isotactic or a syndiotactic polymer is not a stereoregular polymer... [Pg.1276]

A mechanism in which the stereochemistry of the growing chain does exert an influence on the addition might exist, but at least two repeat units in the chain are required to define any such stereochemistry. Therefore this possibility is equivalent to the penultimate mechanism in copolymers. In this case the addition would be described in terms of conditional probabilities, just as Eq. (7.49) does for copolymers. Thus the probability of an isotactic triad controlled by the stereochemistry of the growing chain would be represented by the reaction... [Pg.479]

Polypropylene made by free-radical polymerization is generally atactic , that is to say, there is no pattern to the stereochemistry. On the other hand, both isotactic polypropylene (in which all the stereocenters are the same) and syndiotactic polypropylene (in which the stereocenters alternate) may be made via the Ziegler-Natta process (see Chapter 18, Problem 4). Experimentally, both isotactic and syndiotactic polypropylene generally have higher melting points than atactic polypropylene. [Pg.252]

Examine three different strands ofpolypropylene. For each strand, assign R/S stereochemistry to each stereocenter. (All three strands have as their terminal monomer perfluoropropane in order to facilitate assignment of stereochemistry.) Which of the three strands corresponds to atactic polypropylene, isotactic polypropylene and syndiotactic polypropylene ... [Pg.252]

When poly(propylene) was first made, it was found to exist in two possible forms. One was similar to poly(ethylene), but had greater rigidity and hardness the other was found to be amorphous and of little strength. The first of these is now known to be isotactic, that is with a regular stereochemistry at each alternating carbon atom. The other is now known to be atactic, that is with a random distribution of different stereochemical arrangements... [Pg.7]

Stereochemistry Coordination Polymerization. Stereoisomerism is possible in the polymerization of alkenes and 1,3-dienes. Polymerization of a monosubstituted ethylene, such as propylene, yields polymers in which every other carbon in the polymer chain is a chiral center. The substituent on each chiral center can have either of two configurations. Two ordered polymer structures are possible — isotactic (XII and syndiotactic (XIII) — where the substituent R groups on... [Pg.21]

The course of stereospecific olefin polymerization was studied by using the molecular mechanics programs, MM-2 and Biograph, based on the optimized geometries of the ethylene complex and the transition state [13,203]. Interestingly, the steric interaction at the transition state mainly controls the stereochemistry in polymerization, which proceeds specifically isotactic or syndiotactic depending on the kind of catalyst. [Pg.33]

As for the stereochemistry, for the case of complete cyclization, besides the usual tacticity (possibly, isotactic or syndiotactic, referred to relative configurations of equivalent stereogenic carbons of subsequent monomeric units), the cis or trans configuration of the 1,3-cycloalkane rings which are present in the polymer main chain also has to be considered.70,74... [Pg.26]

Above we mentioned the results reported by Ewen [13] who found that Cp2TiPh2/alumoxane gives a polypropene with isotactic stereoblocks. Naturally, this achiral catalyst can only give chain-end control as it lacks the necessary chiral centre for site control. In the 13C NMR the stereoblocks can be clearly observed as they lead to the typical 1 1 ratio of mmmr and mmrm absorptions in addition to the main peak of mmmm pentads. These are two simple examples showing how the analysis of the 13C NMR spectra can be used for the determination of the most likely mechanism of control of the stereochemistry. Obviously, further details can be obtained from the statistical analysis of the spectra and very neat examples are known [18],... [Pg.204]

Stereochemistry. The field of organic chemistry devoted, to three-dimensional spatial arrangements of molecules. Deals with stereoisomers, compounds having identical chemical formulas but different spatial arrangement of their atoms, such as geometric (cis/trans) isomers and optical (isotactic, atactic, and syndiotactic) isomers. [Pg.415]

The butadiene polymers represent another cornerstone of macromolecular stereochemistry. Butadiene gives rise to four different types of stereoregular polymers two with 1,2 linkage and two with 1,4. The first two, isotactic (62) and syndiotactic (25), conform to the definitions given for vinyl polymers, while the latter have, for eveiy monomer unit, a disubstituted double bond that can exist in the two different, cis and trans, configurations (these terms are defined with reference to the polymer chain). If the monomer units all have the same cis or trans configuration the polymers are called cis- or trans-tactic (30 and 31). The first examples of these stereoisomers were cited in the patent literature as early as 1955-1956 (63). Structural and mechanistic studies in the field have been made by Natta, Porri, Corradini, and associates (65-68). [Pg.10]

The same type of addition—as shown by X-ray analysis—occurs in the cationic polymerization of alkenyl ethers R—CH=CH—OR and of 8-chlorovinyl ethers (395). However, NMR analysis showed the presence of some configurational disorder (396). The stereochemistry of acrylate polymerization, determined by the use of deuterated monomers, was found to be strongly dependent on the reaction environment and, in particular, on the solvation of the growing-chain-catalyst system at both the a and jS carbon atoms (390, 397-399). Non-solvated contact ion pairs such as those existing in the presence of lithium catalysts in toluene at low temperature, are responsible for the formation of threo isotactic sequences from cis monomers and, therefore, involve a trans addition in contrast, solvent separated ion pairs (fluorenyllithium in THF) give rise to a predominantly syndiotactic polymer. Finally, in mixed ether-hydrocarbon solvents where there are probably peripherally solvated ion pairs, a predominantly isotactic polymer with nonconstant stereochemistry in the jS position is obtained. It seems evident fiom this complexity of situations that the micro-tacticity of anionic poly(methyl methacrylate) cannot be interpreted by a simple Bernoulli distribution, as has already been discussed in Sect. III-A. [Pg.89]

The hypothesis of stereochemical control linked to catalyst chirality was recently confirmed by Ewen (410) who used a soluble chiral catalyst of known configuration. Ethylenebis(l-indenyl)titanium dichloride exists in two diaste-reoisomeric forms with (meso, 103) and C2 (104) symmetry, both active as catalysts in the presence of methylalumoxanes and trimethylaluminum. Polymerization was carried out with a mixture of the two isomers in a 44/56 ratio. The polymer consists of two fractions, their formation being ascribed to the two catalysts a pentane-soluble fraction, which is atactic and derives from the meso catalyst, and an insoluble crystalline fraction, obtained from the racemic catalyst, which is isotactic and contains a defect distribution analogous to that observed in conventional polypropylenes obtained with heterogeneous catalysts. The failure of the meso catalyst in controlling the polymer stereochemistry was attributed to its mirror symmetry in its turn, the racemic compound is able to exert an asymmetric induction on the growing chains due to its intrinsic chirality. [Pg.92]


See other pages where Isotactic stereochemistry is mentioned: [Pg.203]    [Pg.208]    [Pg.155]    [Pg.166]    [Pg.226]    [Pg.230]    [Pg.234]    [Pg.318]    [Pg.321]    [Pg.325]    [Pg.481]    [Pg.482]    [Pg.356]    [Pg.87]    [Pg.359]    [Pg.203]    [Pg.208]    [Pg.155]    [Pg.166]    [Pg.226]    [Pg.230]    [Pg.234]    [Pg.318]    [Pg.321]    [Pg.325]    [Pg.481]    [Pg.482]    [Pg.356]    [Pg.87]    [Pg.359]    [Pg.313]    [Pg.475]    [Pg.467]    [Pg.407]    [Pg.411]    [Pg.313]    [Pg.421]    [Pg.35]    [Pg.135]    [Pg.616]    [Pg.565]    [Pg.46]    [Pg.267]    [Pg.267]   
See also in sourсe #XX -- [ Pg.165 ]




SEARCH



Isotacticities

Isotacticity

Poly isotactic stereochemistry

© 2024 chempedia.info