Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stereogenic carbon

Although the ion pairs of a-substituted benzyl anions and the corresponding cations are chiral species, which, in addition, often bear a pyramidal and hence stereogenic carbon atom, in most cases rapid racemization of the alkali and alkaline earth metal derivatives occurs in solution... [Pg.186]

Organometallic Reagents with Stereogenic Carbon Centers... [Pg.913]

Ueno and coworkers49 have developed a procedure for the synthesis of chiral sulfinic acids. Treatment of (R)-( + )-23 with disulfide 24 and tributylphosphine in THF gave (S)-( — )-25. Compound 25 was oxidized with potassium permanganate to the sulfone, which was then reduced to the sulfinic acid, (S)-( — )-26, by treatment with sodium borohydride. Conversion of 26 or an analog to an ester would lead to diastereomers. If these epimers could be separated, then they would offer a path to homochiral sulfoxides with stereogenic carbon and sulfur atoms. [Pg.62]

The use of a stereogenic carbon centre allowed an efficient asymmetric induction in the benzannulation reaction towards axial-chiral intermediates in the synthesis of configurationally stable ring-C-functionalised derivatives of al-locolchicinoids [51]. The benzannulation of carbene complex 52 with 1-pen-tyne followed by oxidative demetalation afforded a single diastereomer 53 (Scheme 33). [Pg.141]

The strategy described here explains the different possibilities of enzymatic ammonolysis and aminolysis reaction for resolution of esters or preparation of enantiomerically pure amides, which are important synthons in organic chemistry. This methodology has been also applied for the synthesis of pyrrolidinol derivatives that can be prepared via enzymatic ammonolysis of a polyfunctional ester, such as ethyl ( )-4-chloro-3-hydroxybutanoate [30]. In addition, it is possible in the resolution of chiral axe instead of a stereogenic carbon atom. An interesting enzymatic aminolysis of this class of reaction has been recently reported by Aoyagi et al. [31[. The side chain of binaphthyl moiety plays an important role in the enantiodis-crimination of the process (Scheme 7.14). [Pg.179]

A molecule that contains just one chiral carbon atom (defined as a carbon atom connected to four different groups also called an asymmetric or stereogenic carbon atom) is always chiral, and hence optically active. As seen in Figure 4.1, such a molecule cannot have a plane of symmetry, whatever the identity of W, X, Y, and Z, as long as they are all different. However, the presence of a chiral carbon is neither a necessary nor a sufficient condition for optical activity, since optical activity may be present in molecules with no chiral atom and since some molecules with two or more chiral carbon atoms are superimposable on their mirror images, and hence inactive. Examples of such compounds will be discussed subsequently. [Pg.128]

For many open-chain compounds, prefixes are used that are derived from the names of the corresponding sugars and that describe the whole system rather than each chiral center separately. Two such common prefixes are erythro- and threo-, which are applied to systems containing two stereogenic carbons when two of the groups are the same and the third is different. The erythro pair has the identical Y Y Y Y... [Pg.146]

The substituted carbons are stereogenic carbons. This means that there are not only two isomers. In the most general case, where W, X, Y, and Z are all different, there are four isomers since neither the cis nor the trans isomer is superimposable on its mirror image. This is true regardless of ring size or which carbons are involved, except that in rings of even-numbered size when W, X, Y, and Z are at opposite comers, no chirality is present, (e.g., 68). In this case, the substituted carbons are not chiral carbons. Note also that a plane of symmetry exists in such compounds. When W = Y and X=Z, the cis isomer is always superimposable on its mirror image, and hence is a meso compound, while the trans isomer consists of a dl pair, except in... [Pg.160]

High levels of diastereocontrol in an ISOC reaction were induced by a stereogenic carbon center that bears a Si substituent (Scheme 23) [55]. For instance, conversion of nitro alkenes (e.g., 199) to j3-siloxyketones (e.g., 203) has been accomplished via a key ISOC reaction-reduction sequence with complete control of 1,5-relative stereochemistry. The generality of the ISOC reaction of a silyl nitronate with a vinylsilane was demonstrated with seven other examples. Corresponding INOC reaction proceeded with lower stereoselectivity. [Pg.29]

Stereoinversion Stereoinversion can be achieved either using a chemoenzymatic approach or a purely biocatalytic method. As an example of the former case, deracemization of secondary alcohols via enzymatic hydrolysis of their acetates may be mentioned. Thus, after the first step, kinetic resolution of a racemate, the enantiomeric alcohol resulting from hydrolysis of the fast reacting enantiomer of the substrate is chemically transformed into an activated ester, for example, by mesylation. The mixture of both esters is then subjected to basic hydrolysis. Each hydrolysis proceeds with different stereochemistry - the acetate is hydrolyzed with retention of configuration due to the attack of the hydroxy anion on the carbonyl carbon, and the mesylate - with inversion as a result of the attack of the hydroxy anion on the stereogenic carbon atom. As a result, a single enantiomer of the secondary alcohol is obtained (Scheme 5.12) [8, 50a]. [Pg.105]

In the compounds discussed above, the sulfur atom was attached directly to the stereogenic carbon atom. However, some structures that have remote sulfur... [Pg.161]

Because the configuration at the stereogenic carbon has undergone an inversion, we can conclude that the reaction has occurred via an Sn2 mechanism. [Pg.624]

It is well documented that hydrosilylation of alkyl-substituted terminal olefins catalyzed by transition metal complexes proceeds with high regioselectivity in giving linear hydrosilylation products which do not possess a stereogenic carbon center.2 It follows that the asymmetric synthesis by use of the hydrosilylation of alkyl-substituted... [Pg.828]

As for the stereochemistry, for the case of complete cyclization, besides the usual tacticity (possibly, isotactic or syndiotactic, referred to relative configurations of equivalent stereogenic carbons of subsequent monomeric units), the cis or trans configuration of the 1,3-cycloalkane rings which are present in the polymer main chain also has to be considered.70,74... [Pg.26]

In the enantioselective synthesis, the asymmetry (i.e., the stereoselectivity) is induced by the external chiral catalyst, while the diastereoselective synthesis does not require a chiral catalyst. The stereogenic center already present in the molecule is able to induce stereoselectivity, assuming that the synthesis starts with a single enantiomer. For instance, imagine that an a,/ -substituted product is formed, and that the reactant already contains a stereogenic carbon at a. If the reaction of (aS) leads, e.g., largely to (aS, / R) and hardly to the (aS, /IS) diastereomer (i.e., stereoisomers that are not mirror-images of each other), the reaction is diastereoselective (Scheme 14.2). [Pg.497]

Two 4-methylene-l,3-dioxane diastereoisomers, isomeric at C-6, were subjected to the rhodium-catalyzed hydro-formylation. The stereochemistry of the newly formed stereogenic carbon was guided solely by the acetal stereocenter (not by C-6) (Scheme 56) <1997JA11118, 1998TL6423>. [Pg.798]

Stereogenic carbon centers may be generated via bond formation from, v/r -centers via sp3 --> sp3 transformations and from -centers via sp2 - > sp3 transformations, the latter case being by far the more common. [Pg.113]

Enantioselective deprotonation can also be successfully extended to 4,4-disubstituted cyclohexanones. 4-Methyl-4-phenylcyclohexanone (3) gives, upon reaction with various chiral lithium amides in THF under internal quenching with chlorotrimethylsilane, the silyl enol ether 4 having a quaternary stereogenic carbon atom. Not surprisingly, enantioselectivities are lower than in the case of 4-tm-butylcyclohexanone. Oxidation of 4 with palladium acetate furnishes the a./i-unsaturated ketone 5 whose ee value can be determined by HPLC using the chiral column Chiralcel OJ (Diacel Chemical Industries, Ltd.)59c... [Pg.600]


See other pages where Stereogenic carbon is mentioned: [Pg.290]    [Pg.185]    [Pg.106]    [Pg.164]    [Pg.165]    [Pg.195]    [Pg.831]    [Pg.194]    [Pg.174]    [Pg.274]    [Pg.281]    [Pg.741]    [Pg.46]    [Pg.290]    [Pg.107]    [Pg.36]    [Pg.290]    [Pg.99]    [Pg.61]    [Pg.348]    [Pg.864]    [Pg.883]    [Pg.235]    [Pg.113]    [Pg.241]    [Pg.338]    [Pg.869]    [Pg.396]    [Pg.348]   
See also in sourсe #XX -- [ Pg.102 ]

See also in sourсe #XX -- [ Pg.197 ]

See also in sourсe #XX -- [ Pg.192 ]

See also in sourсe #XX -- [ Pg.160 ]




SEARCH



© 2024 chempedia.info