Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isomerization chromatography

Finally, the techniques of nmr, infrared spectroscopy, and thin-layer chromatography also can be used to assay maleic anhydride (172). The individual anhydrides may be analyzed by gas chromatography (173,174). The isomeric acids can be determined by polarography (175), thermal analysis (176), paper and thin-layer chromatographies (177), and nonaqueous titrations with an alkaU (178). Maleic and fumaric acids may be separated by both gel filtration (179) and ion-exchange techniques (180). [Pg.459]

Analytical and Test Methods. o-Nitrotoluene can be analyzed for purity and isomer content by infrared spectroscopy with an accuracy of about 1%. -Nitrotoluene content can be estimated by the decomposition of the isomeric toluene diazonium chlorides because the ortho and meta isomers decompose more readily than the para isomer. A colorimetric method for determining the content of the various isomers is based on the color which forms when the mononitrotoluenes are dissolved in sulfuric acid (45). From the absorption of the sulfuric acid solution at 436 and 305 nm, the ortho and para isomer content can be deterrnined, and the meta isomer can be obtained by difference. However, this and other colorimetric methods are subject to possible interferences from other aromatic nitro compounds. A titrimetric method, based on the reduction of the nitro group with titanium(III) sulfate or chloride, can be used to determine mononitrotoluenes (32). Chromatographic methods, eg, gas chromatography or high pressure Hquid chromatography, are well suited for the deterrnination of mononitrotoluenes as well as its individual isomers. Freezing points are used commonly as indicators of purity of the various isomers. [Pg.70]

With the exception of gasoHne grade /-butyl alcohol (GTBA), the butanols are generally marketed in bulk in the pure isomeric form. ASTM specifications (29) for n-, iso- and j -butyl alcohol are given in Table 3. Butanol specification purity is routinely obtained by gas chromatography (30). [Pg.358]

Plus other three isomeric diisocyanides, separable by chromatography. [Pg.220]

The 7a-bromo-5a-6-ketone (56) is conveniently prepared from a mixture of the 5a- and 5j5-6-ketones (55) under equilibrating conditions. It is formed from the 5a-isomer (55) via the 5a-bromo-compound, and from the 5j -isomer (55) via the 7a-bromo-5i -6-ketone (see section II-A). Dehydrobromination is effected in DMF, and chromatography of the crude product separates the title compound (58) from remaining starting material and isomeric A -6-ketone (57). ... [Pg.300]

The piperidine, pyrrolidine, and morpholine enamines of cyclohexanone substituted in the 3-position by methyl, phenyl, and l-butyl have been prepared (49). The complexity of the NMR spectra in the ethylenic hydrogen region indicated a mixture of isomeric enamines. Estimation of the per cent of each isomer by examination of the NMR spectra was not possible, nor were the isomeric enamines separable by vapor-phase chromatography. [Pg.65]

The order NO2 > Cl, which is known for the reactions of nitro-activated aromatic compounds, is also found for pyridine and quinoline derivatives. In the reaction of 2-chloro-4-nitroquinoline with methoxide ion, only the 4-methoxide derivative is formed, as shown by gas-chromatography, whereas 2,4-dichloroquinoline yields a mixture of the isomeric chloro-methoxy derivatives in comparable amounts. ... [Pg.350]

The lipophilicity (7 m value) and specific hydrophobic surface area of 1 ]/f-pyrido[2,]-fi]quinazolin-] 1-one and its isomeric 6//-pyrido[l, 2-u]qui-nazolin-6-one were determined by reversed-phase thin-layer chromatography (98MI4). [Pg.259]

Discrimination between the enantiomers of a racemic mixture is a complex task in analytical sciences. Because enantiomers differ only in their structural orientation, and not in their physico-chemical properties, separation can only be achieved within an environment which is unichiral. Unichiral means that a counterpart of the race-mate to be separated consists of a pure enantiomeric form, or shows at least enrichment in one isomeric form. Discrimination or separation can be performed by a wide variety of adsorption techniques, e.g. chromatography in different modes and electrophoresis. As explained above, the enantioseparation of a racemate requires a non-racemic counterpart, and this can be presented in three different ways ... [Pg.185]

Careful chromatographic and detailed HNMR spectroscopic analysis of the products from the thermolyses of ethyl azidoformate in o-, m- and p-xylene revealed in all cases a mixture of 1 //-azepines.80 In o-xylene, only two of the four possible isomers were separated and characterized, namely, ethyl 4,5-dimethy 1-1 //-azepine-1 -carboxylate (9 %) and ethyl 3,4-dimethyl-l H-azepine-1-carboxylate (7 %). w-Xylene yielded a 2 3 mixture of ethyl 3,5-dimethyl-l//-azepine-1-carboxylate and ethyl 2,4-dimethyl-l//-azepine-l-carboxylate. The 2,4-dimethyl isomer (20 %) can be isolated from the mixture by removal of the 3,5-dimethyl isomer as its Diels-Alder cycloadduct with ethenetetracarbonitrile. p-Xylene gave a mixture of the two possible isomeric azepines which were partially separated by column chromatography. A pure sample of ethyl 2,5-dimethyl-1//-azepine-1-carboxylate (26%) was obtained from the mixture by selective decomposition of the 3,6-dimethyl isomer with refluxing alcoholic potassium hydroxide. [Pg.139]

Likewise, synthetic 2//-azepines isomerize to 3//-azepines in refluxing chloroform (2-3 h) or in tert-butyl methyl ether at room temperature.291 The isomers can be readily separated by chromatography on silica gel, as the more basic 2//-azepines30 have lower Rf values. In contrast, 7-butyl-2//-azepin-2-acetic acid (11), obtained by heating the tert-butyl ester 10 with iodotrimethylsilane, is stabilized by intramolecular hydrogen bonding and shows no tendency to rearrange to the 3//-isomer.291... [Pg.173]

The first reported example31,117 involved the diethyltetraphenyl-3//-azepines 18 and 19 which were obtained in 85% overall yield by the reaction of2,3-diethyl-2//-azirine with 2,3,4,5-tetraphenylcyclopentadienone (see Section 3.1.1.1.2.). The two isomeric azepines are separable by column chromatography (alumina or silica gel), and each isomer, on warming in xylene for three days, equilibrates to a 3 8 mixture of the 3//-azepines 18 and 19. [Pg.174]

However, if the azepine is C-monosubstituted, e.g. 14, or unsymmetrically substituted, then two isomeric 2-azabicycloheptadienes, e. g. 15 and 16, may result corresponding to electrocyclic ring closure involving C2-C5 or C4-C7 of the azepine ring. In practice, the ratio of the two isomers formed (which may be separated by vapor phase chromatography) varies with the position of the substituent.236 In contrast, irradiation of methyl 2,5-di-tm-butyl-l//-azepine-l-carboxylatein methanol yields only methyl 3,5-di-tert-bulyl-2-azabicycIo[3.2.0]hepta-3,6-diene-2-carboxylate (81 %).70... [Pg.177]

Dibenz[c,/][1,2]oxazcpine-ll-carbonitrile isomerizes to the TV-oxide acridine-9-carbonitrile 10-oxide on heating in aprotic solvents. Attempted chromatography on silica gel or alumina columns gave a mixture of the oxepino[2,3-6]quinolinecarbonitrile 2, the oxoazepinoindolecarbo-nitrile 3 and the benzo[c]-2-aza-l,6-oxa[10]annulenecarbonitrile 4. Only these types of compounds were isolated when 2,7-dimethylacridine 10-oxide was irradiated.6... [Pg.301]

Ethyl l//-l,2-diazepine-l-carboxylates 5 (Section 4.1.3.1.1.1.2.) rearrange to 1/7-1,3-diazepines 6 in refluxing xylene.157 The reaction only succeeds with 1,2-diazepines containing methyl groups in the 4- and/or 6-positions 3-, 5- or 7-substituted 1,2-diazepines do not isomerize to 1,3-diazepines. The products are very sensitive to hydrolysis so that chromatography has to be performed on Sephadex. [Pg.369]

Condensation of a series of methyl glycopyranosiduloses with nitromethane provides isomeric nitroaldol adducts, precursors of branched-chain amino sugars30. The isomers are separable by chromatography. [Pg.634]

Mixtures may be separated by chromatography or by using solubility differences. Isomerization often occurs on heating solutions of m-Pt(RCN)2Cl2 give mixtures of the cis- and trans-forms, while solid m-Pt(PhCN)2Cl2 gives the trans-isomer. [Pg.207]

Using the 3 mm. by 2 m. gas chromatography column described above, a mixture of stereoisomers of 2-allyl-5-methylcyclohexanone [Cyclohexanone, 5-methyl-2-(2-propenyl)-], prepared by allylation of the enamine of 3-methylcyclohexanone,7a showed peaks at retention times of 8.4 minutes (more stable isomer) and 9.6 minutes. A mixture of the two isomeric 2-allyl-3-methylcyclohexanones and the two isomeric 2-allyl-5-methylcyclohexanones clearly exhibited four distinct peaks on gas chromatography. [Pg.55]

In Ghosh s enantioselective total synthesis of the cytotoxic marine macrolide (+)-amphidinolide T1 (318) [143], the C1-C10 fragment 317 was constructed by CM of subunits 315 and 316 (Scheme 62). The reaction mediated by catalyst C (5 mol%) afforded in the first cycle an inconsequential 1 1 mixture of (E/Z)-isomeric CM products 317 in 60% yield, along with the homodimers of 315 and 316. The self-coupling products were separated by chromatography and exposed to a second metathesis reaction to provide olefins 317 in additional 36% yield [144]. [Pg.332]

As reported by Shani and Sondheimer,1 the dehydrohalogenation of the tetrabromide by means of potassium hydroxide in ethanol at 50-55° affords a mixture, which is readily separated by chromatography on alumina, of l,6-oxido[10]annulene and the isomeric 1-benzo-xepin. The latter compound is also formed during chromatography of l,6-oxido[10]annulene on silica gel.7... [Pg.89]

Next we studied high temperature bromination of benzobarrelene at 150 C. NMR analysis indicated that the reaction mixture was very complex and consisted of at least ten products. After repeated column chromatography combined with fractional crystallization we have been able to separate 18 compounds (Scheme 6). Four of them were bromoalcohol compounds 18, 12, 22 and 2fl. After high temperature bromination we expected three isomeric non-rearranged products with benzobarrelene skeleton and isolated 22, 22, and 24 in yields of 34, 9.3, and 6.2 %, respectively. Because of the very close structural similarity we were not able to make a clear-cut differentiation between the stereochemistry of 22 and 24-Therefore, we carried out an X-ray analysis (ref. 9) of the isomer 22-... [Pg.72]


See other pages where Isomerization chromatography is mentioned: [Pg.23]    [Pg.23]    [Pg.23]    [Pg.24]    [Pg.23]    [Pg.23]    [Pg.23]    [Pg.24]    [Pg.217]    [Pg.168]    [Pg.43]    [Pg.160]    [Pg.477]    [Pg.179]    [Pg.311]    [Pg.200]    [Pg.776]    [Pg.206]    [Pg.66]    [Pg.301]    [Pg.12]    [Pg.64]    [Pg.992]    [Pg.197]    [Pg.58]    [Pg.72]    [Pg.60]    [Pg.108]    [Pg.569]    [Pg.19]    [Pg.114]    [Pg.88]    [Pg.325]    [Pg.12]   
See also in sourсe #XX -- [ Pg.28 , Pg.37 ]




SEARCH



© 2024 chempedia.info