Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Physical isomerism

The rotational isomeric state (RIS) model assumes that conformational angles can take only certain values. It can be used to generate trial conformations, for which energies can be computed using molecular mechanics. This assumption is physically reasonable while allowing statistical averages to be computed easily. This model is used to derive simple analytic equations that predict polymer properties based on a few values, such as the preferred angle... [Pg.308]

When two different substituents are attached to each carbon atom of the double bond, cis-trans isomers can exist. In the case of c T-2-butene (Fig. 1.11a), both methyl groups are on the same side of the double bond. The other isomer has the methyl groups on opposite sides and is designated as rran5--2-butene (Fig. l.llb). Their physical properties are quite different. Geometric isomerism can also exist in ring systems examples were cited in the previous discussion on conformational isomers. [Pg.43]

Thiothionyl Fluoride and Difluorodisulfane. Thiothionyl fluoride [1686-09-9] S=SF2, and difluorodisulfane [13709-35-8] FSSF, are isomeric compounds which may be prepared as a mixture by the action of various metal fluorides on sulfur vapor or S2CI2 vapor. Chemically, the two isomers are very similar and extremely reactive. However, in the absence of catalytic agents and other reactive species, FSSF is stable for days at ordinary temperatures and S=SF2 may be heated to 250°C without significant decomposition (127). Physical properties of the two isomers are given in Table 6. The microwave spectmm of S=SF2 has been reported (130). [Pg.244]

DIFLUOROBENZENES Interest in the commercialization of difluoroaromatics in crop protection chemicals and dmgs (Table 5) continues to be strong. Numerous liquid crystals containing the 1,2-difluorobenzene moiety have been synthesized. Table 6 lists physical properties of commercially significant intermediates such as o-, m-, and -difluorobenzene, 2,4-difluoroaniline and 2,6-difluorobenzonitrile. The LD q values for the three isomeric difluorobenzenes are identical 55 g/m for 2 h (inhalation, mouse) (127). [Pg.324]

Diethyl Ketone. Diethyl ketone [96-22-0] (3-pentanone) is isomeric with methyl / -propyl ketone (2-pentanone), which has similar solvent and physical properties. Diethyl ketone is produced by the decarboxylation of propionic acid over Mn02—alumina (165), Zr02 (166), or Zr02 or Th02 on Ti02 (167,168). Diethyl ketone can also be produced by the hydrocarbonylation of ethylene (169—171). It is used as a solvent and a reaction intermediate. [Pg.493]

Maleic and fiimaric acids have physical properties that differ due to the cis and trans configurations about the double bond. Aqueous dissociation constants and solubiUties of the two acids show variations attributable to geometric isomer effects. X-ray diffraction results for maleic acid (16) reveal an intramolecular hydrogen bond that accounts for both the ease of removal of the first carboxyl proton and the smaller dissociation constant for maleic acid compared to fumaric acid. Maleic acid isomerizes to fumaric acid with a derived heat of isomerization of —22.7 kJ/mol (—5.43 kcal/mol) (10). The activation energy for the conversion of maleic to fumaric acid is 66.1 kJ/mol (15.8 kcal/mol) (24). [Pg.449]

Two-iing cycloaliphatic diamines such as methylenedi(cyclohexylaniine) (MDCHA), histoiically misnamed bisamino cyclohexyhnethane), oi PACM, also exhibit critically dependent fundamental physical properties as a function of configurational isomerism, the simplest and most important being melting point. [Pg.207]

Physical Properties. Ammonium thiocyanate [1762-95-4] NH SCN, is a hygroscopic crystalline soHd which deHquesces at high humidities (375,376). It melts at 149°C with partial isomerization to thiourea. It is soluble in water to the extent of 65 wt % at 25°C and 77 wt % at 60°C. It is also soluble to 35 wt % in methanol and 20 wt % in ethanol at 25°C. It is highly soluble in Hquid ammonia and Hquid sulfur dioxide, and moderately soluble in acetonitrile. [Pg.151]

Pure biphenyl is a white crystalline soHd that separates from solvents as plates or monoclinic prismatic crystals. Commercial samples are often slightly yellow or tan in color. Similady, pure terphenyls are white crystalline soHds whereas commercial grades are somewhat yellow or tan. Physical and chemical constants for biphenyl and the three isomeric terphenyls are given in Tables 2 and 3, respectively. [Pg.114]

Catalysts from Physical Mixtures. Two separate catalysts with different functions may be pulverized to fine powders and mixed to form a catalyst system that accomplishes a reaction sequence that neither of the two iadividual catalysts alone can achieve. For such catalyst systems, the reaction products of catalyst A become the feedstocks for catalyst B and vice versa. An example is the three-step isomerization of alkanes by a mixture of... [Pg.195]

The isomeric mixture is a colodess, mobile Hquid with a sweet, slightly irritating odor resembling that of chloroform. It decomposes slowly on exposure to light, air, and moisture. The mixture is soluble ia most hydrocarbons and only slightly soluble ia water. The cis—trans proportions ia a cmde mixture depend on the production conditions. The isomers have distinct physical and chemical properties and can be separated by fractional distillation. [Pg.19]

Dichloroethylene consists of a mixture of the cis and trans isomers, as manufactured. The physical properties of both isomeric forms are Hsted ia Table 1. Biaary and ternary a2eotrope data for the cis and trans isomers are given ia Table 2. [Pg.19]

Table 1. Physical Properties of the Isomeric Forms of 1,2-Dichloroethylene... Table 1. Physical Properties of the Isomeric Forms of 1,2-Dichloroethylene...
Selected physical properties of chloroprene are Hsted in Table 1. When pure, the monomer is a colorless, mobile Hquid with slight odor, but the presence of small traces of dimer usually give a much stronger, distinctive odor similar to terpenes and inhibited monomer may be colored from the stabilizers used. Ir and Raman spectroscopy of chloroprene (4) have been used to estimate vibrational characteristics and rotational isomerization. [Pg.37]

Carbonylation, or the Koch reaction, can be represented by the same equation as for hydrocarboxylation. The catalyst is H2SO4. A mixture of C-19 dicarboxyhc acids results due to extensive isomerization of the double bond. Methyl-branched isomers are formed by rearrangement of the intermediate carbonium ions. Reaction of oleic acid with carbon monoxide at 4.6 MPa (45 atm) using 97% sulfuric acid gives an 83% yield of the C-19 dicarboxyhc acid (82). Further optimization of the reaction has been reported along with physical data of the various C-19 dibasic acids produced. The mixture of C-19 acids was found to contain approximately 25% secondary carboxyl and 75% tertiary carboxyl groups. As expected, the tertiary carboxyl was found to be very difficult to esterify (80,83). [Pg.63]

From a general point of view, the tautomeric studies can be divided into 12 areas (Figure 20) depending on the migrating entity (proton or other groups, alkyl, acyl, metals. ..), the physical state of the study (solid, solution or gas phase) and the thermodynamic (equilibrium constants) or the kinetic (isomerization rates) approach. [Pg.211]

Annular tautomerism does not occur in isothiazoles or benzisothiazoles. Substituent tautomers can sometimes be distinguished by chemical methods, but it is important that reaction mechanisms and the relative rates of interconversion of tautomeric starting materials or isomeric reaction products are carefully investigated. Physical methods only will be considered in this section, and references to original publications can be found in a comprehensive review (76AHC(S1)1). [Pg.145]

Most physical properties are but little affected by nuclear-spin isomerism though the thermal conductivity of P-H2 is more than 50% greater than that of 0-H2, and this forms a ready means of analysing mixtures. The mp of P-H2 (containing only 0.21% (3-H2) is 0.15 K below that of normal hydrogen (containing 75% 0-H2), and by extrapolation the mp of (unobtainable) pure... [Pg.36]

A similar type of isomerism occurs for [Ma3b3] octahedral complexes since each trio of donor atoms can occupy either adjacent positions at the comers of an octahedral face (/hcial) or positions around the meridian of the octahedron (meridional). (Fig. 19.12.) Geometrical isomers differ in a variety of physical properties, amongst which dipole moment and visible/ultraviolet spectra are often diagnostically important. [Pg.919]

Compounds whose molecular compositions are multiples of a simple stoichiometry are polymers, stricdy, only if they are formed by repetition of the simplest unit. However, the name polymerization isomerism is applied rather loosely to cases where the same stoichiometry is retained but where the molecular arrangements are different. The stoichiometry PtCl2(NH3)2 applies to the 3 known compounds, [Pt(NH3)4][PtCU], [Pt(NH3)4][PtCl3(NH3)]2, and [PtCl(NH3)3]2[PtCl4] (in addition to the cis and trans isomers of monomeric [PtCl2(NH3)2]). There are actually 7 known compounds with the stoichiometry Co(NH3)3(N02)3. Again it is clear that considerable differences are to be expected in the chemical properties and in physical properties such as conductivity. [Pg.921]

Schimmel Co. attempted to acetylise the alcohol by means of acetic anhydride, but the reaction product only showed 5 per cent, of ester, which was not submitted to further examination. The bulk of the alcohol had been converted into a hydrocarbon, with loss of water. Ninety per cent, formic acid is most suitable for splitting off water. Gne hundred grams of the sesquiterpene alcohol were heated to boiling-point with three times the quantity of formic acid, well shaken, and, after cooling, mixed with water. The layer of oil removed from the liquid was freed fi-om resinous impurities by steam-distillation, and then fractionated at atmo.spheric pressure. It was then found to consist of a mixture of dextro-rotatory and laevo-rotatory hydrocarbons. By repeated fractional distillation, partly in vacuo, partly at ordinary pressure, it was possible to separate two isomeric sesquiterpenes, which, after treatment with aqueous alkali, and distillation over metallic sodium, showed the following physical constants —... [Pg.158]

The hitherto unanswered question whether the chemically identical thujonas isolated from various essential oils are also physically identical, or whether they are physically isomeric, has now been decided by Wallach in the last-named sense. He has succeeded in establishing the presence of two and possibly of three thujones, although with regard to the third the more probable view is, that it represents a mixture of the other two. His examination has, moreover, proved that thuja oil contains essentially... [Pg.235]

The physical and chemical properties of complex ions and of the coordination compounds they form depend on the spatial orientation of ligands around the central metal atom. Here we consider the geometries associated with the coordination numbers 2,4, and 6. With that background, we then examine the phenomenon of geometric isomerism, in which two or more complex ions have the same chemical formula but different properties because of their different geometries. [Pg.413]

Two or more species with different physical and chemical properties but the same formula are said to be isomers of one another. Complex ions can show many different kinds of isomerism, only one of which we will consider. Geometric isomers are ones that differ only in the spatial orientation of ligands around the central metal atom. Geometric isomerism is found in square planar and octahedral complexes. It cannot occur in tetrahedral complexes where all four positions are equivalent... [Pg.414]


See other pages where Physical isomerism is mentioned: [Pg.21]    [Pg.59]    [Pg.109]    [Pg.225]    [Pg.889]    [Pg.1985]    [Pg.2946]    [Pg.97]    [Pg.280]    [Pg.318]    [Pg.309]    [Pg.300]    [Pg.341]    [Pg.781]    [Pg.66]    [Pg.26]    [Pg.669]    [Pg.684]    [Pg.48]    [Pg.70]    [Pg.184]    [Pg.236]    [Pg.987]    [Pg.8]    [Pg.217]    [Pg.43]   
See also in sourсe #XX -- [ Pg.96 ]




SEARCH



Isomerism and the Physical Properties of Alkanes

© 2024 chempedia.info