Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isocyanate aniline

Reductive carbonylation of nitro compounds is catalyzed by various Pd catalysts. Phenyl isocyanate (93) is produced by the PdCl2-catalyzed reductive carbonylation (deoxygenation) of nitrobenzene with CO, probably via nitrene formation. Extensive studies have been carried out to develop the phosgene-free commercial process for phenyl isocyanate production from nitroben-zene[76]. Effects of various additives such as phenanthroline have been stu-died[77-79]. The co-catalysts of montmorillonite-bipyridylpalladium acetate and Ru3(CO) 2 are used for the reductive carbonylation oLnitroarenes[80,81]. Extensive studies on the reaction in alcohol to form the A -phenylurethane 94 have also been carried out[82-87]. Reaction of nitrobenzene with CO in the presence of aniline affords diphenylurea (95)[88]. [Pg.538]

Methylenebis(4-phenyl isocyanate). This compound is also known as methyl diisocyanate [101-68-8] (MDI) and is produced by the condensation of aniline and formaldehyde with subsequent phosgenation. Its principal end use is rigid urethane foams other end uses include elastic fibers and elastomers. Total formaldehyde use is 5% of production (115). [Pg.497]

Both dimethyl carbonate [616-38-6] and diphenyl carbonate [102-09-0] have been used, in place of carbon monoxide, as reagents for the conversion of amines into isocyanates via this route (28,29). Alternatively, aniline [62-53-3] toluene diamines (I JJA), and methylene dianilines (MDA) have also been used as starting materials in the carbonylations to provide a wide variety of isocyanate monomers. [Pg.448]

For methylene diphenyl diisocyanate (MDI), the initial reaction involves the condensation of aniline [62-53-3] (21) with formaldehyde [50-00-0] to yield a mixture of oligomeric amines (22, where n = 1, 2, 3...). For toluene diisocyanate, amine monomers are prepared by the nitration (qv) of toluene [108-88-3] and subsequent hydrogenation (see Amines byreduction). These materials are converted to the isocyanate, in the majority of the commercial aromatic isocyanate phosgenation processes, using a two-step approach. [Pg.452]

V-Phenylsuccinimide [83-25-0] (succanil) is obtained in essentially quantitative yield by heating equivalent amounts of succinic acid and aniline at 140—150°C (25). The reaction of a primary aromatic amine with phosgene leads to formation of an arylcarbamoyl chloride, that when heated loses hydrogen chloride to form an isocyanate. Commercially important isocyanates are obtained from aromatic primary diamines. [Pg.229]

Commercially, a small amount of the 4,4 -MDA is isolated by distillation from PMDA. Depending on the process employed, the removal of MDA can be partial (as is done with the isocyanates) or total. Partial removal of MDA gives some processiag latitude but yields of 4,4 -MDA are reduced. Distillation residues from PMDA manufacture that contain less than 1% MDA pose a disposal problem. Processes for the regeneration of MDA by heating these residues ia the presence of aniline and an acid catalyst have been patented (33—35). Waste disposal of PMDA is expensive and reclamation processes could become commercially viable. The versatility of the isocyanate process, however, can be used to avoid the formation of low MDA content distillation residues. [Pg.250]

The late 1950s also witnessed the emergence of a new polymeric isocyanate (PMDI) based on the condensation of aniline with formaldehyde. This... [Pg.341]

Isocyanates. The commodity isocyanates TDI and PMDI ate most widely used in the manufacture of urethane polymers (see also Isocyanates, organic). The former is an 80 20 mixture of 2,4- and 2,6-isomers, respectively the latter a polymeric isocyanate obtained by phosgenation of aniline—formaldehyde-derived polyamines. A coproduct in the manufacture of PMDI is 4,4 -methylenebis(phenyHsocyanate) (MDI). A 65 35 mixture of 2,4- and 2,6-TDI, pure 2,4-TDI and MDI enriched in the 2,4 -isomer are also available. The manufacture of TDI involves the dinitration of toluene, catalytic hydrogenation to the diamines, and phosgenation. Separation of the undesired 2,3-isomer is necessary because its presence interferes with polymerization (13). [Pg.344]

This tri-isocyanate is reported to impart good light stability and weather resistanee in polyurethane eoatings and is probably the most widely used aliphatic isocyanate. A number of other aliphatic polyisocyanates have been introduced recently in attempts to produce polyurethanes with improved light stability. Amine derivatives of diphenylmethane are made by reacting aniline of toluidines with formaldehyde. These can lead to a mixture of di-isoeyanates, the diphenylmethane di-isocyanates (MDIs) of commerce. Triphenylmethane-pp p"-tny tri-isocyanate is produced from leucorosaniline. [Pg.781]

The most commonly used isocyanate is a modified form of MDI. Such polymeric forms may be prepared, for example, by reacting phosgene with formaldehyde-aniline condensates which have average functionalities of between 2 and 7 and may be represented by the formula given in Figure 27.10. [Pg.806]

Chlorobenzene Producers Association (CPA), 270 p-Chlorobenzotrichloride, 39 Chlorobenzotrifluorides, 39 Chlorobromomethane, 39 Chlorodifluorobromomethane, 39 Chlorodifluoroethane, 39 Chlorodifluoromethane, 39 Chlorodiphenyl, 39 Chloroethanol, 39 2-Chloroethyl vinyl ether, 39 Chlorofluorocarbons, 39 Chloroform, 40 Chloromethyl anilines, 40 Chloromethyl ether, 40 Chloromethyl methyl ether, 40 2-(4-Chloro-2-methylphenoxy) propionic acid, 40 Chloromethyl phenyl isocyanate, 40... [Pg.327]

If 5ym."diethylurea is heated with aniline, the gaseous ethylamine which results from the dearrangement escapes and the ethyl isocyanate combines with the less volatile aniline to form sym.-ethylphenylurea. This substance can now dearrange into two modes. [Pg.3]

Aluminum chloride-phosphorus oxychloride complex, 31, 88 Amberlite IR-4B resin, 32, 13 Amidation, of isocyanic acid with bromo-aniline and other aromatic amines, 31,8... [Pg.52]

Reductive carbonylation of nitro compounds (in particular aromatic dinitro compounds) is an important target in industry for making diisocyanates, one of the starting materials for polycarbamates. At present diisocyanates are made from diamines and phosgene. Direct synthesis of isocyanates from nitro compounds would avoid the reduction of nitro compounds to anilines, the... [Pg.184]

Aniline is an aromatic amine used in the manufacture of dyes, dye intermediates, rubber accelerators, and antioxidants. It has also been used as a solvent, in printing inks, and as an intermediate in the manufacture of pharmaceuticals, photographic developers, plastics, isocyanates, hydroquinones, herbicides, fungicides, and ion-exchange resins. It is produced commercially by catalytic vapor phase hydrogenation of nitrobenzene (Benya and Cornish 1994 HSDB 1996). Production of aniline oil was listed at approximately 1 billion pounds in 1993 (U.S. ITC 1994). Chemical and physical properties are listed in Table 1-2. [Pg.36]

The stability of o-sulfonylbenzonitrile oxides and their thiophene analogs probably depends on electronic factors. The same factors do not prevent dimerization, as can be seen from data concerning several differently substituted nitrile oxides of the thiophene series (103). Sterically stabilized 3-thiophenecarbonitrile oxides 18 (R = R1 = R2 = Me R = R2 = Me, R1 = i -Pr), when boiled in benzene or toluene, isomerized to isocyanates (isolated as ureas on reaction with aniline) while nitrile oxides 18 with electron-withdrawing substituents (R1 and/or R2 = SOiMe, Br) dimerized to form furoxans 19. [Pg.13]

The synthesis of 3-H-oxazol-2-ones was described by Nam et al. [69]. The substituted benzoin 89 was formed from the coupling of 3,4,5-trimethoxy-benzaldehyde 18 with 3-nitro-4-methoxybenzaldehyde, Scheme 22. Reaction with PMB-isocyanate and subsequent cyclization gave the protected oxazolone derivative 90. The PMB group was removed by reflux in TFA and reduction of the nitro-group was performed using Zn to give the combretoxazolone-aniline 91. [Pg.38]

Consider the laboratory reactor system shown in Figure 10-9. This system is designed to react phosgene (COCl2) with aniline to produce isocyanate and HC1. The reaction is shown in Figure 10-10. The isocyanate is used for the production of foams and plastics. [Pg.455]

Chemical/Physical. Diuron decomposes at 180 to 190 °C releasing dimethylamine and 3,4-dichlorophenyl isocyanate. Dimethylamine and 3,4-dichloroaniline are produced when hydrolyzed or when acids or bases are added at elevated temperatures (Sittig, 1985). The hydrolysis half-life of diuron in a 0.5 N NaOH solution at 20 °C is 150 d (El-Dib and Aly, 1976). When diuron was pyrolyzed in a helium atmosphere between 400 and 1,000 °C, the following products were identified dimethylamine, chlorobenzene, 1,2-dichlorobenzene, benzonitrile, a trichlorobenzene, aniline, 4-chloroaniline, 3,4-dichlorophenyl isocyanate, bis(l,3-(3,4-dichlorophenyl)urea), 3,4-dichloroaniline, and monuron [3-(4-chlorophenyl)-l,l-dimethylurea] (Gomez et al., 1982). Products reported from the combustion of diuron at 900 °C include carbon monoxide, carbon dioxide, chlorine, nitrogen oxides, and HCl (Kennedy et al., 1972a). [Pg.526]

Chlorotrifluoromethyl aniline (no. 73.) was found in the sediment samples. This compound is used as a reactant with chloro-aniline (no. 72) in the preparation of 4,4 -dichloro-3-(trifluoromethyl)-carbanilide, a disinfectant. Two other related compounds also found in some of the sediments were chlorophenyl isocyanate (no. 74) and chloro(-trifluoromethyl)phenyl isocyanate (no. 75). This suggests that some of the 4,4 -dichloro-3-(trifluoromethyl)-carbanilide may, in fact, exist in the sediment extracts but is decomposed in the injection port of the gas chromatograph, since it is very doubtful that the easily hydrolyzable isocyanates exist as such in the sediments. To strengthen this hypothesis some 3,4,4 -trichlorocarbanilide [none of the 4,4 -dichloro-3-(trifluorome-thyl)-carbanilide was available] was analyzed by GCMS. The injection port temperature was 300°C. As expected, none of the parent compound eluted from the column. However, mass spectra were obtained for chlorophenyl isocyanate, dichlorophenyl isocyanate, chloroaniline, and dichloroaniline. The presence of the carbanilides themselves (no. 76, 77, 78) was confirmed with the help of HPLC and mass spectral identification. [Pg.72]


See other pages where Isocyanate aniline is mentioned: [Pg.1588]    [Pg.136]    [Pg.69]    [Pg.1588]    [Pg.136]    [Pg.69]    [Pg.79]    [Pg.224]    [Pg.247]    [Pg.249]    [Pg.263]    [Pg.344]    [Pg.109]    [Pg.74]    [Pg.200]    [Pg.59]    [Pg.61]    [Pg.69]    [Pg.180]    [Pg.427]    [Pg.585]    [Pg.34]    [Pg.244]    [Pg.455]    [Pg.47]    [Pg.163]    [Pg.1464]    [Pg.1507]    [Pg.68]    [Pg.394]    [Pg.446]    [Pg.933]   
See also in sourсe #XX -- [ Pg.538 ]




SEARCH



Aniline isocyanate precursors

Isocyanates production from aniline

© 2024 chempedia.info