Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iron seawater

The copper-chelating abihty of sahcylaldoxime has been used to remove copper from brine in a seawater desalination plant effluent. A carbon—sorbate bed produced by sorption of the oxime on carbon proved to be extremely effective in the continuous process (99). In another apphcation, the chelating abihty of sahcylaldoxime with iron and copper was used to stabilize bleaching powders containing inorganic peroxide salts (100). [Pg.508]

The advent of a large international trade in methanol as a chemical feedstock has prompted additional purchase specifications, depending on the end user. Chlorides, which would be potential contaminants from seawater during ocean transport, are common downstream catalyst poisons likely to be excluded. Limitations on iron and sulfur can similarly be expected. Some users are sensitive to specific by-products for a variety of reasons. Eor example, alkaline compounds neutralize MTBE catalysts, and ethanol causes objectionable propionic acid formation in the carbonylation of methanol to acetic acid. Very high purity methanol is available from reagent vendors for small-scale electronic and pharmaceutical appHcations. [Pg.282]

In galvanic coupling, titanium is usually the cathode metal and consequently not attacked. The galvanic potential in flowing seawater in relation to other metals is shown in Table 10. Because titanium is a cathode metal, hydrogen absorption may be of concern, as it occurs with titanium complexed to iron (38). [Pg.104]

Uses. Copper—nickel—iron alloys, UNS C 96200 (90 10 copper nickel) and UNS C 96400 (70 30 copper nickel), are used in corrosion-resistant marine (seawater) appHcations. UNS C 96400 is used for corrosion-resistant marine elbows, flanges, valves, and pumps. Leaded nickel—brass, UNS C 97300 (12% nickel-silver), is used for hardware fittings, valves, and statuary and ornamental castings. [Pg.251]

The concept of the corrosion process, derived from the Latin corrodere (to eat away, to destroy), first appeared in the Philosophical Transactions in 1667 [2]. It was discussed in a German translation from the French on the manufacture of white lead in 1785 and was mentioned in 1836 in the translation of an English paper by Davy on the cathodic protection of iron in seawater [3]. However, almost until the present day, the term was used indiscriminately for corrosion reaction, corrosion effects, and corrosion damage. Only in DIN 50900, Part I, were these terms distinguished and defined [4] (see Section 2.1). [Pg.1]

The corrosion rates of wrought iron and mild steel when immersed in seawater or buried in soil are not significantly different when the copper contents are similar. [Pg.489]

Cathodic protection applications in fresh water include use of ferrite-coated niobium , and the more usual platinum-coated niobium . Platinised niobium anodes have been used in seawater, underground and in deep wells " and niobium connectors have been used for joining current leads Excellent service has been reported in open-seawater, where anodic potentials of up to 120V are not deleterious, but crevice corrosion can occur at 20 to 40V due to local surface damage, impurities such as copper and iron, and under deposits or in mud ... [Pg.860]

The problem of the high resistance polarisation decreases with increasing water content and salinity, such as prevails during immersion in seawater, where these anodes are particularly useful. Since no problems of burial arise in that environment an endless variety of disused iron-ware has been utilised for anodes, e.g. pipes, piling, machinery, rails and even obsolete shipping which has not been economic to salvage. Consumption rates in excess of the theoretical value have been reported for steel in different waters . [Pg.174]

Magnetite anodes exhibit a relatively low consumption rate when compared with other anode materials, namely graphite, silicon iron and lead and can be used in seawater, fresh water and soils. This low consumption rate enables a light-weight anode construction to be utilised. For example, the anode described by Linder is 800 mm in length 60 mm in diameter, 10 mm wall thickness and 6 kg in weight. [Pg.178]

Guide for crevice corrosion testing of iron base and nickel base stainless steels in seawater and other chloride-containing aqueous environments... [Pg.1102]

Metallic magnesium is produced by either chemical or electrolytic reduction of its compounds. In chemical reduction, first magnesium oxide is obtained from the decomposition of dolomite. Then ferrosilicon, an alloy of iron and silicon, is used to reduce the MgO at about 1200°C. At this temperature, the magnesium produced is immediately vaporized and carried away. The electrolytic method uses seawater as its principal raw material magnesium hydroxide is precipitated by adding slaked lime (Ca(OH)2, see Section 14.10), the precipitate is filtered off and treated with hydrochloric acid to produce magnesium chloride, and the dried molten salt is electrolyzed. [Pg.713]

Silicic acid (H4Si04) is a necessary nutrient for diatoms, who build their shells from opal (Si02 H20). Whether silicic acid becomes limiting for diatoms in seawater depends on the availability of Si relative to N and P. Estimates of diatom uptake of Si relative to P range from 16 1 to 23 1. Dugdale and Wilkerson (1998) and Dunne et al. (1999) have shown that much of the variability in new production in the equatorial Pacific may be tied to variability in diatom production. Diatom control is most important at times of very high nutrient concentrations and during non-steady-state times, perhaps because more iron is available at those times. [Pg.249]


See other pages where Iron seawater is mentioned: [Pg.159]    [Pg.182]    [Pg.117]    [Pg.96]    [Pg.138]    [Pg.88]    [Pg.238]    [Pg.300]    [Pg.159]    [Pg.182]    [Pg.117]    [Pg.96]    [Pg.138]    [Pg.88]    [Pg.238]    [Pg.300]    [Pg.286]    [Pg.287]    [Pg.522]    [Pg.337]    [Pg.179]    [Pg.183]    [Pg.151]    [Pg.471]    [Pg.2472]    [Pg.11]    [Pg.12]    [Pg.47]    [Pg.210]    [Pg.211]    [Pg.217]    [Pg.372]    [Pg.384]    [Pg.906]    [Pg.909]    [Pg.696]    [Pg.697]    [Pg.709]    [Pg.1344]    [Pg.77]    [Pg.144]    [Pg.177]    [Pg.179]    [Pg.786]    [Pg.1102]    [Pg.403]    [Pg.285]   
See also in sourсe #XX -- [ Pg.103 ]




SEARCH



Seawater dissolved iron concentrations

Seawater iron distribution

© 2024 chempedia.info