Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iron complexes carbon

Alkenes in (alkene)dicarbonyl(T -cyclopentadienyl)iron(l+) cations react with carbon nucleophiles to form new C —C bonds (M. Rosenblum, 1974 A.J. Pearson, 1987). Tricarbon-yi(ri -cycIohexadienyI)iron(l-h) cations, prepared from the T] -l,3-cyclohexadiene complexes by hydride abstraction with tritylium cations, react similarly to give 5-substituted 1,3-cyclo-hexadienes, and neutral tricarbonyl(n -l,3-cyciohexadiene)iron complexes can be coupled with olefins by hydrogen transfer at > 140°C. These reactions proceed regio- and stereospecifically in the successive cyanide addition and spirocyclization at an optically pure N-allyl-N-phenyl-1,3-cyclohexadiene-l-carboxamide iron complex (A.J. Pearson, 1989). [Pg.44]

Cyclopentadiene itself has been used as a feedstock for carbon fiber manufacture (76). Cyclopentadiene is also a component of supported metallocene—alumoxane polymerization catalysts in the preparation of syndiotactic polyolefins (77), as a nickel or iron complex in the production of methanol and ethanol from synthesis gas (78), and as Group VIII metal complexes for the production of acetaldehyde from methanol and synthesis gas (79). [Pg.435]

Alkylation of the anion 2 with iodomethane or other haloalkanes provides alkyldicarbonyl(t/5-cyclopentadienyl)iron complexes such as 53,0 (see also Houben-Weyl, Vol. 13/9a, p 209). Migratory insertion of carbon monoxide occurs on treatment with phosphanes or phosphites9 -11 (see also Houben-Weyl, Vol. d3/9a, p257) to provide chiral iron-acyl complexes such as 6. This is the most commonly used preparation of racemic chiral iron-acyl complexes. [Pg.518]

Subsequent carbonylation of the alkyl-iron complexes with carbon monoxide provides the desired chiral iron-acyl complexes, with essentially complete inversion of configuration at... [Pg.522]

Unexpectedly, neither direct complexation nor the deoxygenated complexes 95 or 96136,137 were observed in the reaction of diphenylthiirene oxide (18a) with iron nonacarbonyl. Instead, the red organosulfur-iron complex 97138 was isolated12, which required the cleavage of three carbon-sulfur bonds in the thiirene oxide system (see equation 33). The mechanism of the formation of 97 from 18a is as yet a matter of speculation. [Pg.412]

Although there are some reactions that use complex 76 stoichiometrically [50-58], it was not until 1979 that Roustan et al. developed the first catalytic application of complex 76-Na (Scheme 16) [59, 60]. In his publication, he could show that catalytic amounts of complex 76-Na react with an allylic chloride or acetate to form an allyl-iron-complex, which, in a second step, is substituted with a malonate to yield 77. Most importantly, they observed a preference for the ipso-substitution-product 77a, that is, the new C-Nu-bond was formed preferentially at the carbon atom that was substituted with the leaving group before. [Pg.196]

The identification and quantification of potentially cytotoxic carbonyl compounds (e.g. aldehydes such as pentanal, hexanal, traw-2-octenal and 4-hydroxy-/mAW-2-nonenal, and ketones such as propan- and hexan-2-ones) also serves as a useful marker of the oxidative deterioration of PUFAs in isolated biological samples and chemical model systems. One method developed utilizes HPLC coupled with spectrophotometric detection and involves precolumn derivatization of peroxidized PUFA-derived aldehydes and alternative carbonyl compounds with 2,4-DNPH followed by separation of the resulting chromophoric 2,4-dinitrophenylhydrazones on a reversed-phase column and spectrophotometric detection at a wavelength of378 nm. This method has a relatively high level of sensitivity, and has been successfully applied to the analysis of such products in rat hepatocytes and rat liver microsomal suspensions stimulated with carbon tetrachloride or ADP-iron complexes (Poli etui., 1985). [Pg.16]

As part of ongoing research into the behavior of (vinylcarbene)iron complexes,119120 Mitsudo and Watanabe found that the trifluoromethyl-substituted vinylcarbene 174 exhibited a reactivity different from that of both 166 and 169.107 Upon treatment of the complex 174 with triphenylphos-phine the vinylketene complex 175 is formed, a reaction identical to that seen in the series of vinylcarbene complexes 166 (R = H). However, when the vinylcarbene 174 is exposed to a high pressure of carbon monoxide, it is converted cleanly to the ferracyclopentenone 176. Remember that when the vinylcarbene complex 166 (R = H) was treated in the same manner, conversion stopped at the vinylketene complex 167 Even when exposed to a pressure of 80 atmospheres of CO(g), no further reaction was seen to occur. An electron donating ligand (L = PR3) is required for conversion to cyclopentenone structure 168. Conversely, when the more electron-rich vinylcarbene 169 is exposed to carbon monoxide in the same manner, the pyrone complex 172 is formed. [Pg.323]

Many of the syntheses we have seen within this review depend on the carbonylation of a vinylcarbene complex for the generation of the vinylketene species. The ease of this carbonylation process is controlled, to some degree, by the identity of the metal. The electronic characteristics of the metal will clearly have a great effect on the strength of the metal-carbon double bond, and as such this could be a regulating factor in the carbene-ketene transformation. It is interesting to note the comparative reactivity of a (vinylcarbene)chromium species with its iron analogue The former is a fairly stable species, whereas the latter has been shown to carbonylate readily to form the appropriate (vinylketene)iron complex. [Pg.351]

Appelo CAJ, VanDerWeiden MJJ, Toumassat C, Charlet L (2002) Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic. Environ Sci Techno 36 3096-3103 Ardizzone S, Formaro L (1983) Temperature induced phase transformation of metastable Fe(OH), in the presence of ferrous ions. Mat Chem Phys 8 125-133... [Pg.402]

Figure 6 illustrates a more complicated situation. The sample was a plain iron-carbon steel—an iron foil carburized to about 5 atomic % carbon and then quenched. One sees a rather complex pattern. There is a large central peak from some untransformed high temperature face-centered phase of iron containing carbon in solid solution, retained austenite. There is a strong six-line pattern coming from martensite, a distorted body-centered solid solution of carbon in iron. We also see a... [Pg.30]

Carbonvlation of Benzyl Halides. Several organometallic reactions involving anionic species in an aqueous-organic two-phase reaction system have been effectively promoted by phase transfer catalysts(34). These include reactions of cobalt and iron complexes. A favorite model reaction is the carbonylation of benzyl halides using the cobalt tetracarbonyl anion catalyst. Numerous examples have appeared in the literature(35) on the preparation of phenylacetic acid using aqueous sodium hydroxide as the base and trialkylammonium salts (Equation 1). These reactions occur at low pressures of carbon monoxide and mild reaction temperatures. Early work on the carbonylation of alkyl halides required the use of sodium amalgam to generate the cobalt tetracarbonyl anion from the cobalt dimer(36). [Pg.146]

The iron-mediated synthesis of 2-oxygenated carbazole alkaloids is limited and provides only a moderate yield (11%) for the oxidative cyclization to 2-methoxy-3-methylcarbazole using iodine in pyridine as the reagent [90]. Ferricenium hexafluorophosphate is the superior reagent for the iron-mediated arylamine cyclization leading to 3-oxygenated carbazoles (Scheme 12). Electrophilic substitution of the arylamines 16 with the complex salt 6a leads to the iron complexes 17. Oxidative cyclization of the complexes 17 with an excess of ferricenium hexafluorophosphate in the presence of sodium carbonate affords... [Pg.124]

Other aspects of solvation have included the use of surfactants (SDS, CTAB, Triton X-100), sometimes in pyridine-containing solution, to solubilize and de-aggregate hemes, i.e., to dissolve them in water (see porphyrin complexes, Section 5.4.3.7.2). An example is provided by the solubilization of an iron-copper diporphyrin to permit a study of its reactions with dioxygen and with carbon monoxide in an aqueous environment. Iron complexes have provided the lipophilic and hydrophilic components in the bifunctional phase transfer catalysts [Fe(diimine)2Cl2]Cl and [EtsBzNJpeCU], respectively. [Pg.413]

An alternative method for the oxidative cyclization of the arylamine-substituted tricarbonyl(r -cyclohexa-l,3-diene)iron complex (725) is the iron-mediated arylamine cyclization. Using ferricenium hexafluorophosphate in the presence of sodium carbonate provided hyellazole (245) directly, along with the complex 727, which was also converted to the natural product (599,600) (Scheme 5.71). [Pg.236]

The arylamine 780b required for the total synthesis of carbazomycin B (261) was obtained by catalytic hydrogenation, using 10% palladium on activated carbon, of the nitroaryl derivative 784 which was obtained in six steps and 33% overall yield starting from 2,3-dimethylphenol 781 (see Scheme 5.85). Electrophilic substitution of the arylamine 780b with the iron-complex salt 602 provided the iron complex 787 in quantitative yield. The direct, one-pot transformation of the iron complex 787 to carbazomycin B 261 by an iron-mediated arylamine cyclization was unsuccessful, probably because the unprotected hydroxyarylamine moiety is too sensitive towards the oxidizing reaction conditions. However, the corresponding 0-acetyl derivative... [Pg.247]


See other pages where Iron complexes carbon is mentioned: [Pg.365]    [Pg.138]    [Pg.523]    [Pg.76]    [Pg.139]    [Pg.162]    [Pg.242]    [Pg.192]    [Pg.249]    [Pg.252]    [Pg.14]    [Pg.1068]    [Pg.757]    [Pg.238]    [Pg.612]    [Pg.238]    [Pg.365]    [Pg.289]    [Pg.322]    [Pg.11]    [Pg.385]    [Pg.329]    [Pg.57]    [Pg.103]    [Pg.104]    [Pg.89]    [Pg.305]    [Pg.575]    [Pg.28]    [Pg.275]    [Pg.41]    [Pg.41]    [Pg.238]   
See also in sourсe #XX -- [ Pg.181 ]




SEARCH



Carbon complex

Carbonate complexation

Carbonate) complexes

Iron carbonate

Iron-carbon

© 2024 chempedia.info