Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionophores analysis

It has been long believed that a lithium ion-selective electrode would render obsolete the flame photometer in the clinical laboratory. Lithium is administered to manic depressive psychiatric patients. Since the therapeutic range (0.5-1.5 mM) is quite close to the toxic range (>2 mM), it must be closely monitored. Most of the iono-phores propo d to date have not met the Li" /Na selectivity required for an interference-free assay. However, it has been reported that calibration in the presence of 140 mMNa permitted the analysis of Li in serum The errors observed are due to fluctuations in the Na concentrations in the sample. More selective ionophores would certainly improve the accuracy of this method. [Pg.61]

Figure 5 also shows the effect of the ionophore concentration of the Langmuir type binding isotherm. The slope of the isotherm fora membrane with 10 mM of ionophore 1 was roughly three times larger than that with 30 mM of the same ionophore. The binding constant, K, which is inversely proportional to the slope [Eq. (3)], was estimated to be 4.2 and 11.5M for the membranes with 10 mM and 30 mM ionophore 1, respectively. This result supports the validity of the present Langmuir analysis because the binding constant, K, should reflect the availability of the surface sites, the number of which should be proportional to the ionophore concentration, if the ionophore is not surface active itself In addition, the intercept of the isotherm for a membrane with 10 mM of ionophore 1 was nearly equal to that of a membrane with 30 mM ionophore 1 (see Fig. 5). This suggests the formation of a closest-packed surface molecular layer of the SHG active Li -ionophore 1 cation complex, whose surface concentration is nearly equal at both ionophore concentrations. On the other hand, a totally different intercept and very small slope of the isotherm was obtained for a membrane containing only 3 mM of ionophore 1. This indicates an incomplete formation of the closest-packed surface layer of the cation complexes due to a lack of free ionophores at the membrane surface, leading to a kinetic limitation. In this case, the potentiometric response of the membrane toward Li+ was also found to be very weak vide infra). Figure 5 also shows the effect of the ionophore concentration of the Langmuir type binding isotherm. The slope of the isotherm fora membrane with 10 mM of ionophore 1 was roughly three times larger than that with 30 mM of the same ionophore. The binding constant, K, which is inversely proportional to the slope [Eq. (3)], was estimated to be 4.2 and 11.5M for the membranes with 10 mM and 30 mM ionophore 1, respectively. This result supports the validity of the present Langmuir analysis because the binding constant, K, should reflect the availability of the surface sites, the number of which should be proportional to the ionophore concentration, if the ionophore is not surface active itself In addition, the intercept of the isotherm for a membrane with 10 mM of ionophore 1 was nearly equal to that of a membrane with 30 mM ionophore 1 (see Fig. 5). This suggests the formation of a closest-packed surface molecular layer of the SHG active Li -ionophore 1 cation complex, whose surface concentration is nearly equal at both ionophore concentrations. On the other hand, a totally different intercept and very small slope of the isotherm was obtained for a membrane containing only 3 mM of ionophore 1. This indicates an incomplete formation of the closest-packed surface layer of the cation complexes due to a lack of free ionophores at the membrane surface, leading to a kinetic limitation. In this case, the potentiometric response of the membrane toward Li+ was also found to be very weak vide infra).
Potentiometry is the measurement of the potential at an electrode or membrane electrode, so the detector response is in units of volts. The potentio-metric response tends to be slow, so potentiometry is used infrequently in analysis.47 One example is the use of a polymeric membrane impregnated with ionophores for the selective detection of potassium, sodium, ammonium, and calcium 48 In process chromatography, potentiometry may be used to monitor selected ions or pH as these values change over the course of the gradient. [Pg.220]

Ion-selective electrode research for biomedical analysis is no longer the relatively narrow, focused field of identifying and synthesizing ionophores for improved selectivity and the integration of ion-selective electrodes into clinical analyzers and portable instruments. These efforts have matured now to such an extent that they can teach valuable lessons to other chemical sensing fields that are just emerging technologies. [Pg.131]

Calcium-selective electrodes have long been in use for the estimation of calcium concentrations - early applications included their use in complexometric titrations, especially of calcium in the presence of magnesium (42). Subsequently they have found use in a variety of systems, particularly for determining stability constants. Examples include determinations for ligands such as chloride, nitrate, acetate, and malonate (mal) (43), several diazacrown ethers (44,45), and methyl aldofuranosides (46). Other applications have included the estimation of Ca2+ levels in blood plasma (47) and in human hair (where the results compared satisfactorily with those from neutron activation analysis) (48). Ion-selective electrodes based on carboxylic polyether ionophores are mentioned in Section IV.B below. Though calcium-selective electrodes are convenient they are not particularly sensitive, and have slow response times. [Pg.258]

Mixed donor macrocycles have been employed in a number of applications involving the separation or analysis of manganesetll). These include examples of use of such a ligand as the extractant in solvent extraction processes " and as the ionophore in membrane transport studies. [Pg.90]

Polar Cell Systems for Membrane Transport Studies Direct current electrical measurement in epithelia steady-state and transient analysis, 171, 607 impedance analysis in tight epithelia, 171, 628 electrical impedance analysis of leaky epithelia theory, techniques, and leak artifact problems, 171, 642 patch-clamp experiments in epithelia activation by hormones or neurotransmitters, 171, 663 ionic permeation mechanisms in epithelia biionic potentials, dilution potentials, conductances, and streaming potentials, 171, 678 use of ionophores in epithelia characterizing membrane properties, 171, 715 cultures as epithelial models porous-bottom culture dishes for studying transport and differentiation, 171, 736 volume regulation in epithelia experimental approaches, 171, 744 scanning electrode localization of transport pathways in epithelial tissues, 171, 792. [Pg.450]

The masked tetrahydroxyketone 28 (Fig. 7) which can theoretically give isomers 29 and 30, was found to yield isomer 29 exclusively (26). The structure of 29 was proven by X-ray analysis. Similarly, dibromodihydroxyketone 31 can give either isomer 32 or 33. Upon cyclization, isomer 32 was the product formed (27) and its structure was also established by X-ray (28). The recently reported total synthesis of ionophore A-23187 (29), a polyether antibiotic whih possesses the 1,7-dioxaspiro[5.5]undecane skeleton having a conformation equivalent to 29 and 32 confirms these results. [Pg.209]

Chapters 1 to 5 deal with ionophore-based potentiometric sensors or ion-selective electrodes (ISEs). Chapters 6 to 11 cover voltammetric sensors and biosensors and their various applications. The third section (Chapter 12) is dedicated to gas analysis. Chapters 13 to 17 deal with enzyme based sensors. Chapters 18 to 22 are dedicated to immuno-sensors and genosensors. Chapters 23 to 29 cover thick and thin film based sensors and the final section (Chapters 30 to 38) is focused on novel trends in electrochemical sensor technologies based on electronic tongues, micro and nanotechnologies, nanomaterials, etc. [Pg.1]

The combination of keto cyanine dyes with commercial ionophores makes the design of ion-selective optodes feasible, and the use of the IWAO permits increased sensitivity using simple and low-cost equipment so that analysis of a target analyte can be performed in different application fields. [Pg.39]

The first prototype of a technologically improved IWAO was developed and tested with a membrane based on a new H+-selective ketocyanine dye and a commercial cadmium ionophore [39]. Its incorporation in an IWAO allows a highly sensitive and portable optical system to be obtained for an situ chemical analysis as well. The authors propose a flow injection analysis (FIA) system for the determination of cadmium in water samples using a cadmium-selective IWAO, as an alternative method to the ones generally used in analytical control laboratories. It permits enhanced sensitive signals in short response times by taking advantage of the very thin membranes deposited over the circuit. [Pg.39]

The complex between ( )-37 and KPF6 was characterized by X-ray crystal-structure analysis, which confirmed the close tangential orientation of the ionophore moiety with respect to the fullerene surface, which had been predicted by computer modeling (Figure 15). [Pg.149]

Selected examples of other biocatalytic asymmetric oxidations are shown in Figure 20.10. In the area of the polyether ionophore monensin a recently proposed mechanism of oxidative cycUzation of a linear polyketide intermediate by four enzymes, the products of monBI, monBll, monCI, and monCII, has been supported experimentally by analysis of a biosynthetic gene cluster [110] and the accumulation of an B,F,F-triene, when oxidative cydization was blocked [111]. [Pg.328]


See other pages where Ionophores analysis is mentioned: [Pg.1]    [Pg.278]    [Pg.95]    [Pg.679]    [Pg.140]    [Pg.327]    [Pg.539]    [Pg.525]    [Pg.68]    [Pg.75]    [Pg.275]    [Pg.317]    [Pg.577]    [Pg.15]    [Pg.25]    [Pg.265]    [Pg.595]    [Pg.346]    [Pg.14]    [Pg.68]    [Pg.75]    [Pg.1]    [Pg.173]    [Pg.179]    [Pg.577]    [Pg.687]    [Pg.1057]    [Pg.191]    [Pg.234]    [Pg.234]    [Pg.235]    [Pg.236]    [Pg.54]    [Pg.392]    [Pg.234]    [Pg.234]    [Pg.235]   
See also in sourсe #XX -- [ Pg.129 , Pg.132 , Pg.145 , Pg.180 , Pg.202 ]




SEARCH



Ionophor

Ionophore

Ionophores

© 2024 chempedia.info