Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionicity concept

Toop G. W. and Samis C. S. (1962a). Some new ionic concepts of silicate slags. Can. Met. Quart, 1 129-152. [Pg.857]

The steric structure of this product has not been reported. Following the ionicity concept, the polymerization catalyst is shown on the cationic side of Fig. 7. [Pg.367]

Probably we are dealing here with an intrinsic difference between these two structure types. Their solid state chemistry shows the wurtzite structure to be the more rigid one (in terms of substitution, for example). This could imply a difference in Cd-X (X=S,Se,Te) bond strengths. These bond strengths are, according to Pauling s ionicity concept, influenced by the... [Pg.382]

A calculation of the bonding energy of the HF2 ion on the basis of an ionic conception leads to a value of not less than 47.3 kcal (M. M. Davies) even more than the observed value of about 30 kcal. [Pg.371]

Evidence for the Ionic Theory.—There is hardly any branch of electrochemistry, especially in its quantitative aspects, which does not provide arguments in favor of the theory of electrolytic dissociation without the ionic concept the remarkable systematization of the experimental results which has been achieved during the past fifty years would certainly not have been possible. It is of interest, however, to review briefly some of the lines of evidence w hich support the ionic theory. [Pg.11]

It is worth emphasizing that the arguments leading up to the construction of the MUSIC model are gas-phase arguments based on ionic concepts such as Pauling bond order. This essential physics is present in both approaches. It cannot be argued that the MUSIC model is accounting for subtle quantum mechanical effects not present in ionic model because the MUSIC model rests entirely on an ionic framework. [Pg.190]

X-ray diffraction work (11,15) shows that there is an ionomer peak at 4°C which is absent in the acid precursor. This low, broad peak is not affected by annealing or ion type and persists up to 300°C. Since the 4°C peak corresponds to a spacing of about 2.5 nm, it is reasonable to propose a stmctural feature of this dimension in the ionomer. The concept of ionic clusters was initially suggested to explain the large effects on properties of relatively sparse ionic species (1). The exact size of the clusters has been the subject of much debate and has been discussed in a substantial body of Hterature (3,4,18—20). A theoretical treatment has shown that various models can give rise to supramoleculat stmctures containing ionic multiplets which ate about 10 nm in diameter (19). [Pg.407]

Color from Transition-Metal Compounds and Impurities. The energy levels of the excited states of the unpaked electrons of transition-metal ions in crystals are controlled by the field of the surrounding cations or cationic groups. Erom a purely ionic point of view, this is explained by the electrostatic interactions of crystal field theory ligand field theory is a more advanced approach also incorporating molecular orbital concepts. [Pg.418]

This article addresses the synthesis, properties, and appHcations of redox dopable electronically conducting polymers and presents an overview of the field, drawing on specific examples to illustrate general concepts. There have been a number of excellent review articles (1—13). Metal particle-filled polymers, where electrical conductivity is the result of percolation of conducting filler particles in an insulating matrix (14) and ionically conducting polymers, where charge-transport is the result of the motion of ions and is thus a problem of mass transport (15), are not discussed. [Pg.35]

X-ray structural studies have played a major role in transforming chemistry from a descriptive science at the beginning of the twentieth century to one in which the properties of novel compounds can be predicted on theoretical grounds. When W.L. Bragg solved the very first crystal structure, that of rock salt, NaCl, the results completely changed prevalent concepts of bonding forces in ionic compounds. [Pg.13]

Several methods of quantitative description of molecular structure based on the concepts of valence bond theory have been developed. These methods employ orbitals similar to localized valence bond orbitals, but permitting modest delocalization. These orbitals allow many fewer structures to be considered and remove the need for incorporating many ionic structures, in agreement with chemical intuition. To date, these methods have not been as widely applied in organic chemistry as MO calculations. They have, however, been successfully applied to fundamental structural issues. For example, successful quantitative treatments of the structure and energy of benzene and its heterocyclic analogs have been developed. It remains to be seen whether computations based on DFT and modem valence bond theory will come to rival the widely used MO programs in analysis and interpretation of stmcture and reactivity. [Pg.65]

The strength of the complexation is a function of both the donor atom and the metal ion. The solvent medium is also an important factor because solvent molecules that are potential electron donors can compete for the Lewis acid. Qualitative predictions about the strength of donor-acceptor complexation can be made on the basis of the hard-soft-acid-base concept (see Section 1.2.3). The better matched the donor and acceptor, the stronger is the complexation. Scheme 4.3 gives an ordering of hardness and softness for some neutral and ionic Lewis acids and bases. [Pg.234]

The compounds which most nearly fit the clas-sicial conception of ionic bonding are the alkali metal halides. However, even here, one must ask to what extent it is reasonable to maintain that positively charged cations M+ with favourably... [Pg.80]

We had no good way to predict if they would be liquid, but we were lucky that many were. The class of cations that were the most attractive candidates was that of the dialkylimidazolium salts, and our particular favorite was l-ethyl-3-methylimid-azolium [EMIM]. [EMIMJCl mixed with AICI3 made ionic liquids with melting temperatures below room temperature over a wide range of compositions [8]. We determined chemical and physical properties once again, and demonstrated some new battery concepts based on this well behaved new electrolyte. We and others also tried some organic reactions, such as Eriedel-Crafts chemistry, and found the ionic liquids to be excellent both as solvents and as catalysts [9]. It appeared to act like acetonitrile, except that is was totally ionic and nonvolatile. [Pg.5]

For commercial ionic liquid synthesis, quality is a key factor. FFowever, since availability and price are other important criteria for the acceptance of this new solvent concept, the scaling-up of ionic liquid production is a major research interest too. [Pg.28]

In general, the incorporation of an active transition metal catalyst into the anion of an ionic liquid appears to be an attractive concept for applications in which a high catalyst concentration is needed. [Pg.225]

Temperature-dependent phase behavior was first applied to separate products from an ionic liquid/catalyst solution by de Souza and Dupont in the telomerization of butadiene and water [34]. This concept is especially attractive if one of the substrates shows limited solubility in the ionic liquid solvent. [Pg.232]

When water-miscible ionic liquids are used as solvents, and when the products are partly or totally soluble in these ionic liquids, the addition of polar solvents, such as water, in a separation step after the reaction can make the ionic liquid more hydrophilic and facilitate the separation of the products from the ionic liquid/water mixture (Table 5.3-2, case e). This concept has been developed by Union Carbide for the hydroformylation of higher alkenes catalyzed by Rh-sulfonated phosphine ligand in the N-methylpyrrolidone (NMP)/water system. Thanks to the presence of NMP, the reaction is performed in one homogeneous phase. After the reaction. [Pg.265]

The combination of ionic liquids with supercritical carbon dioxide is an attractive approach, as these solvents present complementary properties (volatility, polarity scale.). Compressed CO2 dissolves quite well in ionic liquid, but ionic liquids do not dissolve in CO2. It decreases the viscosity of ionic liquids, thus facilitating mass transfer during catalysis. The separation of the products in solvent-free form can be effective and the CO2 can be recycled by recompressing it back into the reactor. Continuous flow catalytic systems based on the combination of these two solvents have been reported [19]. This concept is developed in more detail in Section 5.4. [Pg.266]

Flowever, information concerning the characteristics of these systems under the conditions of a continuous process is still very limited. From a practical point of view, the concept of ionic liquid multiphasic catalysis can be applicable only if the resultant catalytic lifetimes and the elution losses of catalytic components into the organic or extractant layer containing products are within commercially acceptable ranges. To illustrate these points, two examples of applications mn on continuous pilot operation are described (i) biphasic dimerization of olefins catalyzed by nickel complexes in chloroaluminates, and (ii) biphasic alkylation of aromatic hydrocarbons with olefins and light olefin alkylation with isobutane, catalyzed by acidic chloroaluminates. [Pg.271]

In comparison with classical processes involving thermal separation, biphasic techniques offer simplified process schemes and no thermal stress for the organometal-lic catalyst. The concept requires that the catalyst and the product phases separate rapidly, to achieve a practical approach to the recovery and recycling of the catalyst. Thanks to their tunable solubility characteristics, ionic liquids have proven to be good candidates for multiphasic techniques. They extend the applications of aqueous biphasic systems to a broader range of organic hydrophobic substrates and water-sensitive catalysts [48-50]. [Pg.278]

However, ionic liquids and SCCO2 are not competing concepts for the same applications. While ionic liquids can be considered as alternatives for polar organic solvents, the use of SCCO2 can cover those applications in which non-polar solvents are usually used. [Pg.281]

In the first publication describing the preparative use of an enzymatic reaction in ionic liquids, Erbeldinger et al. reported the use of the protease thermolysin for the synthesis of the dipeptide Z-aspartame (Entry 6) [34]. The reaction rates were comparable to those found in conventional organic solvents such as ethyl acetate. Additionally, the enzyme stability was increased in the ionic liquid. The ionic liquid was recycled several times after the removal of non-converted substrates by extraction with water and product precipitation. Recycling of the enzyme has not been reported. It should be noted, however, that according to the log P concept described in the previous section, ethyl acetate - with a value of 0.68 - may interfere with the pro-... [Pg.339]

For example, Novasina S.A. (www.novasina.com), a Swiss company specializing in the manufacture of devices to measure humidity in air, has developed a new sensor based on the non-synthetic application of an ionic liquid. The new concept makes simple use of the close correlation between the water uptake of an ionic liquid and its conductivity increase. In comparison with existing sensors based on polymer membranes, the new type of ionic liquid sensor shows significantly faster response times (up to a factor of 2.5) and less sensitivity to cross contamination (with alcohols, for example). Each sensor device contains about 50 pi of ionic liquid, and the new sensor system became available as a commercial product in 2002. Figure 9-1 shows a picture of the sensor device containing the ionic liquid, and Figure 9-2 displays the whole humidity analyzer as commercialized by Novasina S.A.. [Pg.348]

It is clear, however, that, from the state of affairs envisaged by Gibson, we can obtain quite a different view of the ionic mobility of Li+ and Na+ —a view in good agreement with the concepts of order-disorder already... [Pg.195]

The great importance of the solubility product concept lies in its bearing upon precipitation from solution, which is, of course, one of the important operations of quantitative analysis. The solubility product is the ultimate value which is attained by the ionic concentration product when equilibrium has been established between the solid phase of a difficultly soluble salt and the solution. If the experimental conditions are such that the ionic concentration product is different from the solubility product, then the system will attempt to adjust itself in such a manner that the ionic and solubility products are equal in value. Thus if, for a given electrolyte, the product of the concentrations of the ions in solution is arbitrarily made to exceed the solubility product, as for example by the addition of a salt with a common ion, the adjustment of the system to equilibrium results in precipitation of the solid salt, provided supersaturation conditions are excluded. If the ionic concentration product is less than the solubility product or can arbitrarily be made so, as (for example) by complex salt formation or by the formation of weak electrolytes, then a further quantity of solute can pass into solution until the solubility product is attained, or, if this is not possible, until all the solute has dissolved. [Pg.26]

At the present time the concept of catalytic (or ionic-coordination ) polymerization has been developed by investigating polymerization processes in the presence of transition metal compounds. The catalytic polymerization may be defined as a process in which the catalyst takes part in the formation of the transition complexes of elementary acts during the propagation reaction. [Pg.173]

Ingold and co-workers champion the concept that nitration is primarily ionic in character and its rate-determining step (at least in a coned nitrating acid medium) involves the nitronium ion, thus ... [Pg.258]


See other pages where Ionicity concept is mentioned: [Pg.2585]    [Pg.75]    [Pg.6]    [Pg.2409]    [Pg.102]    [Pg.105]    [Pg.128]    [Pg.159]    [Pg.99]    [Pg.912]    [Pg.34]    [Pg.75]    [Pg.79]    [Pg.217]    [Pg.279]    [Pg.281]    [Pg.337]    [Pg.342]    [Pg.9]    [Pg.19]    [Pg.198]    [Pg.255]    [Pg.299]   
See also in sourсe #XX -- [ Pg.18 ]




SEARCH



© 2024 chempedia.info