Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionic liquids alcohols

Najdanovic-Visak, V. et al.. Pressure, isotope, and water co-solvent effects in liquid-liquid equilibria of (ionic liquid + alcohol) systems, /. Phys. Chem. B, 107, 12797, 2003. [Pg.63]

COOMe NHAc Hz Rh(l)-(R,R)-Et-DuPhos ionic liquid/alcohol COOMe - "A NHAc ... [Pg.238]

Feher E, Illeova V, Kelemen-Horvath 1, Belafi-Bako K, Polakovic M, Gubicza L (2008) Enzymatic production of isoamyl acetate in an ionic liquid-alcohol biphasic system. J Mol Cattil B Enzym 50 28-33... [Pg.188]

Jahangiri S, Toghikhani M, Behnejad H, Ahmadi S (2008) Theoretical investigation of imidazolium based ionic liquid/alcohol mixture a molecular dynamic simulation. Mol Phys 106 1015-1023... [Pg.206]

Theoretical and applied aspects of microwave heating, as well as the advantages of its application are discussed for the individual analytical processes and also for the sample preparation procedures. Special attention is paid to the various preconcentration techniques, in part, sorption and extraction. Improvement of microwave-assisted solution preconcentration is shown on the example of separation of noble metals from matrix components by complexing sorbents. Advantages of microwave-assisted extraction and principles of choice of appropriate solvent are considered for the extraction of organic contaminants from solutions and solid samples by alcohols and room-temperature ionic liquids (RTILs). [Pg.245]

The second element of general importance in the synthesis of a task-specific ionic liquid is the source of the functional group that is to be incorporated. Key to success here is the identification of a substrate containing two functional groups with different reactivities, one of which allows the attachment of the substrate to the core, and the other of which either is the functional group of interest or is modifiable to the group of interest. Functionalized alkyl halides are commonly used in this capacity, although the triflate esters of functionalized alcohols work as well. [Pg.35]

Ionic liquids are similar to dipolar, aprotic solvents and short-chain alcohols in their solvent characteristics. These vary with anion (from very ionic Cl to more covalent [BETI] ). IFs become more lipophilic with increasing alkyl substitution, resulting in increasing solubility of hydrocarbons and non-polar organics. [Pg.79]

Not all ionic liquids are the same, different combinations of anions and cations produce solvents with different polarities. No ionic liquids have shown themselves to be super-polar regardless of the method used to assess their polarities, ionic liquids come within the range of molecular solvents. Most general measures of overall polarity place ionic liquids in the range of the short- to medium-chain alcohols. [Pg.102]

Reactions between aldehydes and alkynes to give propargyl alcohols are also described in Kitazume and Kasai s paper [55]. Here, various aldehydes such as benzaldehyde or 4-fluorobenzaldehyde were treated with alkynes such as phenylethyne or pent-l-yne in three ionic liquids [EDBU][OTf], [BMIM][PFg], and [BMIM][BF4] (Scheme 5.1-27). A base (DBU) and Zn(OTf)2 were required for the reaction to be effective the yields were in the 50-70 % range. The best ionic liquid for this reaction depended on the individual reaction. [Pg.187]

Scheme 5.1-27 The zinc triflate-catalyzed coupling of alkynes with aldehydes to give propargyl alcohols in an ionic liquid. Scheme 5.1-27 The zinc triflate-catalyzed coupling of alkynes with aldehydes to give propargyl alcohols in an ionic liquid.
In an attempt to study the behavior and chemistry of coal in ionic liquids, 1,2-diphenylethane was chosen as a model compound and its reaction in acidic pyri-dinium chloroaluminate(III) melts ([PyHjCl/AlCb was investigated [69]. At 40 °C, 1,2-diphenylethane undergoes a series of alkylation and dealkylation reactions to give a mixture of products. Some of the products are shown in Scheme 5.1-40. Newman also investigated the reactions of 1,2-diphenylethane with acylating agents such as acetyl chloride or acetic anhydride in the pyridinium ionic liquid [70] and with alcohols such as isopropanol [71]. [Pg.193]

The oxidation of alkenes and allylic alcohols with the urea-EL202 adduct (UELP) as oxidant and methyltrioxorhenium (MTO) dissolved in [EMIM][BF4] as catalyst was described by Abu-Omar et al. [61]. Both MTO and UHP dissolved completely in the ionic liquid. Conversions were found to depend on the reactivity of the olefin and the solubility of the olefinic substrate in the reactive layer. In general, the reaction rates of the epoxidation reaction were found to be comparable to those obtained in classical solvents. [Pg.233]

In order to broaden the field of biocatalysis in ionic liquids, other enzyme classes have also been screened. Of special interest are oxidoreductases for the enan-tioselective reduction of prochiral ketones [40]. Formate dehydrogenase from Candida boidinii was found to be stable and active in mixtures of [MMIM][MeS04] with buffer (Entry 12) [41]. So far, however, we have not been able to find an alcohol dehydrogenase that is active in the presence of ionic liquids in order to make use of another advantage of ionic liquids that they increase the solubility of hydrophobic compounds in aqueous systems. On addition of 40 % v/v of [MMIM][MeS04] to water, for example, the solubility of acetophenone is increased from 20 mmol to 200 mmol L ... [Pg.342]

For example, Novasina S.A. (www.novasina.com), a Swiss company specializing in the manufacture of devices to measure humidity in air, has developed a new sensor based on the non-synthetic application of an ionic liquid. The new concept makes simple use of the close correlation between the water uptake of an ionic liquid and its conductivity increase. In comparison with existing sensors based on polymer membranes, the new type of ionic liquid sensor shows significantly faster response times (up to a factor of 2.5) and less sensitivity to cross contamination (with alcohols, for example). Each sensor device contains about 50 pi of ionic liquid, and the new sensor system became available as a commercial product in 2002. Figure 9-1 shows a picture of the sensor device containing the ionic liquid, and Figure 9-2 displays the whole humidity analyzer as commercialized by Novasina S.A.. [Pg.348]

The polarity of common ionic liquids is in the range of the lower alcohols or formamide, and their miscibility with water varies widely and unpredictably and is... [Pg.14]

Lipases from C. antarctica and P. cepacia showed higher enantioselectivity in the two ionic liquids l-ethyl-3-methylimidazolium tetrafluoroborate and l-butyl-3-methylimidazolium hexafluoroborate than in THE and toluene, in the kinetic resolution of several secondary alcohols [49]. Similarly, with lipases from Pseudomonas species and Alcaligenes species, increased enantioselectivity was observed in the resolution of 1 -phenylethanol in several ionic liquids as compared to methyl tert-butyl ether [50]. Another study has demonstrated that lipase from Candida rugosa is at least 100% more selective in l-butyl-3-methylimidazolium hexafluoroborate and l-octyl-3-nonylimidazolium hexafluorophosphate than in n-hexane, in the resolution of racemic 2-chloro-propanoic acid [51]. [Pg.15]

Aqueous solutions are not suitable solvents for esterifications and transesterifications, and these reactions are carried out in organic solvents of low polarity [9-12]. However, enzymes are surrounded by a hydration shell or bound water that is required for the retention of structure and catalytic activity [13]. Polar hydrophilic solvents such as DMF, DMSO, acetone, and alcohols (log P<0, where P is the partition coefficient between octanol and water) are incompatible and lead to rapid denaturation. Common solvents for esterifications and transesterifications include alkanes (hexane/log P=3.5), aromatics (toluene/2.5, benzene/2), haloalkanes (CHCI3/2, CH2CI2/I.4), and ethers (diisopropyl ether/1.9, terf-butylmethyl ether/ 0.94, diethyl ether/0.85). Exceptionally stable enzymes such as Candida antarctica lipase B (CAL-B) have been used in more polar solvents (tetrahydrofuran/0.49, acetonitrile/—0.33). Room-temperature ionic liquids [14—17] and supercritical fluids [18] are also good media for a wide range of biotransformations. [Pg.134]

Ionic liquid [bmimJPFg can be used as a solvent in yeast reduction [21]. The reduction ofketones with immobilized baker s yeast (alginate) in a 100 10 2 [bmimjPFfi ionic liquid water MeOH mix affords chiral alcohols (Figure 8.28). [Pg.215]

Apart from being employed solely as solvents, ILs can also be used as reagent carriers (TSlLs, task-specific ionic liquids). An efficient system that uses ILs as solvents and anchoring/acylating reagents for the CAL B-catalyzed separation of racemic alcohols is shown in Scheme 5.17 [69]. [Pg.108]

Another iron porphyrin complex with 5,10,15,20-tetrakis(2, 6 -dichloro-3 -sulfonatophenyl)porphyrin was applied in ionic liquids and oxidized veratryl alcohol (3,4-dimethoxybenzyl alcohol) with hydrogen peroxide in yields up to 83% to the aldehyde as the major product [145]. In addition, TEMPO was incorporated via... [Pg.103]

The (5 )-selective DKR of alcohols with subtilisin was also possible in ionic liquid at room temperature (Table 14). " In this case, the cymene-ruthenium complex 3 was used as the racemization catalyst. In general, the optical purities of (5 )-esters were lower than those of (R)-esters described in Table 5. [Pg.69]

Seddon, K.R. Stark, A. (2002) Selective Catalytic Oxidation of Benzyl Alcohol and Alkylbenzenes in Ionic Liquids. Green Chemistry, 4(2), 119-123. [Pg.271]

Additions of the Reformatsky-type reagents to aldehydes can also proceed in ionic solvents (Scheme 108).287 Three ionic liquids have been tested 8-ethyl-l,8-diazbicyclo[5,4,0]-7-undecenium trifluoromethanesulfonate ([EtDBU][OTf]), [bmim][BF4], and [bmim][PF6]. The reactions in the first solvent provided higher yields of alcohols 194 (up to 93%), although results obtained for two other ionic liquids were also comparable with those reported for conventional solvents. [Pg.387]

The concept of performing microwave synthesis in room temperature ionic liquids (RTIL) as reaction media has been applied to several different organic transformations (Scheme 4.18), such as 1,3-dipolar cycloaddition reactions [54], catalytic transfer hydrogenations [55], ring-closing metathesis [56], the conversion of alcohols to alkyl halides [57, 58], and several others [59-61],... [Pg.71]

Hydrofoil impellers, 16 673—674 Hydroformulation, 13 768 Hydroformylation, 10 598 allyl alcohol, 2 236—237 ionic liquids in, 26 882—885 maleic anhydride, 15 492 metal carbonyls in, 16 72—73 rhodium-catalyzed, 19 647 Hydroformylation reactions, 13 448 Hydrogasification, coal, 13 845 Hydrogel-based drug delivery,... [Pg.449]


See other pages where Ionic liquids alcohols is mentioned: [Pg.51]    [Pg.95]    [Pg.447]    [Pg.302]    [Pg.51]    [Pg.95]    [Pg.447]    [Pg.302]    [Pg.187]    [Pg.188]    [Pg.1300]    [Pg.15]    [Pg.14]    [Pg.21]    [Pg.64]    [Pg.187]    [Pg.364]    [Pg.584]    [Pg.13]    [Pg.357]    [Pg.62]    [Pg.401]    [Pg.327]    [Pg.383]    [Pg.960]    [Pg.315]    [Pg.482]    [Pg.484]   
See also in sourсe #XX -- [ Pg.1723 ]




SEARCH



Benzylic alcohols, oxidation ionic liquid

Phase Behaviour of (Ionic Liquid Water Alcohol)

© 2024 chempedia.info