Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionic conductivity electrodes

Alkaline fuel cell (AFC) was used for Apollo and Space Shuttle program. Alkaline fuel cell employs liquid alkaline, e.g., KOH, as an electrolyte so that fuel, as well as air or oxygen, should be free of CO2 because the strong alkaline electrolyte reacts with CO2 to form carbonates, which reduces the ionic conductivity. Electrodes, e.g., Ni, Ag, and metal oxides, are relatively inexpensive compared to that of other fuel cells. [Pg.2502]

The electrodes also contribute to ohmic overpotential due to internal resistance. In the case of mixed electronic and ionic conducting electrodes as such as perovskites both ionic and electronic conduction determines the total internal resistance. However, the electronic... [Pg.48]

At low currents, the rate of change of die electrode potential with current is associated with the limiting rate of electron transfer across the phase boundary between the electronically conducting electrode and the ionically conducting solution, and is temied the electron transfer overpotential. The electron transfer rate at a given overpotential has been found to depend on the nature of the species participating in the reaction, and the properties of the electrolyte and the electrode itself (such as, for example, the chemical nature of the metal). [Pg.603]

In Section 8, the material on solubility constants has been doubled to 550 entries. Sections on proton transfer reactions, including some at various temperatures, formation constants of metal complexes with organic and inorganic ligands, buffer solutions of all types, reference electrodes, indicators, and electrode potentials are retained with some revisions. The material on conductances has been revised and expanded, particularly in the table on limiting equivalent ionic conductances. [Pg.1284]

Molten Carbonate Fuel Cell. The electrolyte ia the MCFC is usually a combiaation of alkah (Li, Na, K) carbonates retaiaed ia a ceramic matrix of LiA102 particles. The fuel cell operates at 600 to 700°C where the alkah carbonates form a highly conductive molten salt and carbonate ions provide ionic conduction. At the operating temperatures ia MCFCs, Ni-based materials containing chromium (anode) and nickel oxide (cathode) can function as electrode materials, and noble metals are not required. [Pg.579]

E/ectro te is a material that provides ionic conductivity between the positive and negative electrodes of a cell. [Pg.506]

Silver—Zinc Separators. The basic separator material is a regenerated cellulose (unplastici2ed cellophane) which acts as a semipermeable membrane aHowiag ionic conduction through the separator and preventing the migration of active materials from one electrode to the other. [Pg.555]

For a large number of applications involving ceramic materials, electrical conduction behavior is dorninant. In certain oxides, borides (see Boron compounds), nitrides (qv), and carbides (qv), metallic or fast ionic conduction may occur, making these materials useful in thick-film pastes, in fuel cell apphcations (see Fuel cells), or as electrodes for use over a wide temperature range. Superconductivity is also found in special ceramic oxides, and these materials are undergoing intensive research. Other classes of ceramic materials may behave as semiconductors (qv). These materials are used in many specialized apphcations including resistance heating elements and in devices such as rectifiers, photocells, varistors, and thermistors. [Pg.349]

The ionic conductivity of a solvent is of critical importance in its selection for an electrochemical application. There are a variety of DC and AC methods available for the measurement of ionic conductivity. In the case of ionic liquids, however, the vast majority of data in the literature have been collected by one of two AC techniques the impedance bridge method or the complex impedance method [40]. Both of these methods employ simple two-electrode cells to measure the impedance of the ionic liquid (Z). This impedance arises from resistive (R) and capacitive contributions (C), and can be described by Equation (3.6-1) ... [Pg.109]

An important feature of such films is their low ionic conductivity that restricts cation transport through the film substance. Electronic semiconduction, however, permits other electrode processes (oxidation of H2O to O2) to take place at the surface without further significant film growth. At elevated anodic potentials adsorption and entry of anions, particularly chloride ions, may lead to instability and breakdown of these protective films (Sections 1.5 and 1.6). [Pg.28]

An element of uncertainty is introduced into the e.m.f. measurement by the liquid junction potential which is established at the interface between the two solutions, one pertaining to the reference electrode and the other to the indicator electrode. This liquid junction potential can be largely eliminated, however, if one solution contains a high concentration of potassium chloride or of ammonium nitrate, electrolytes in which the ionic conductivities of the cation and the anion have very similar values. [Pg.549]

From Eq. (18) the concentration of electrons, and according to Eq. (11) the concentration of holes also, depend on the lithium activity of the electrode phases with which the electrolyte is in contact. Since anode and cathode have quite different lithium activities, the electronic concentration may vary to a large extent and an ionically conducting material may readily turn into an electronic conductor. [Pg.530]

In spite of the extraordinarily high ionic conductivity of silver- and copper-ion conductors, these materials suffer from their low capacity and energy density. In addition, only a few positive electrode materials have been found until now. [Pg.537]

Some fluorine-ion conductors exhibit high ionic conductivities, even at room temperature [4], which are not equaled by other halide-ion conductors. However, there is a lack of known electrode materials. Further research on this topic is very worthwhile. [Pg.537]

Traditionally, the chemical stability of the electrode/electrolyte interface and its electronic properties have not been given as much consideration as structural aspects of solid electrolytes, in spite of the fact that the proper operation of a battery often depends more on the interface than on the solid electrolyte. Because of the high ionic conductivity in the electrolyte and the high electronic conductivity in the electrode, the voltage falls completely within a very narrow region at the electrolyte/electrode interface. [Pg.538]

One-layer systems. One-layer systems might easily overcome most of the above-mentioned problems. Such materials show predominantly ionic conduction in the as-prepared state but behave as electrodes in that the concentration of the mobile component is increased and decreased by the charging process in the vicinity of the two electronic leads. [Pg.539]

Accordingly, the ionic conductivity in an electrolyte with negligible electronic conduction (/jon jtolal) may be determined by Ohm s law, provided that unpolarizable electrodes are employed. To overcome this limitation, separate voltage probes in the shape of identical electronic leads connected to the electrolyte at positions separated by a distance L may be employed (four-probe technique [38]). Under these... [Pg.544]

An example of the determination of activation enthalpies is shown in Figs. 11 and 12. A valuable indication for associating the correct minimum with the ionic conductivity is the migration effect of the minimum with the temperature (Fig. 11) and the linear dependence in the cr(T versus 1/T plot (Fig. 12). However, the linearity may be disturbed by phase transitions, crystallization processes, chemical reactions with the electrodes, or the influence of the electronic leads. [Pg.546]

Figure 13. Schematic diagram of the measurement of the ionic conductivity of a conducting polymer membrane as a function of oxidation state (potential), (a) Pt electrodes (b) potentiostat (c) gold minigrid (d) polymer film (e) electrolyte solution (0 dc or ac resistance measurement.133 (Reprinted with permission from J. Am Chem Soc. 104, 6139-6140, 1982. Copyright 1982, American Chemical Society.)... Figure 13. Schematic diagram of the measurement of the ionic conductivity of a conducting polymer membrane as a function of oxidation state (potential), (a) Pt electrodes (b) potentiostat (c) gold minigrid (d) polymer film (e) electrolyte solution (0 dc or ac resistance measurement.133 (Reprinted with permission from J. Am Chem Soc. 104, 6139-6140, 1982. Copyright 1982, American Chemical Society.)...
Figure 15. Complex plane impedance plots for polypyrrole at (A) 0.1, (B) -0.1, (C) -0.2, (D) -0.3, and (E) -0.4 V vs. Ag/AgCl in NaCl04(aq). The circled points are for a bare Pt electrode. Frequencies of selected points are marked in hertz. (Reprinted from X. Ren and P. O. Pickup, Impedance measurements of ionic conductivity as a probe of structure in electrochemi-cally deposited polypyrrole films, / Electmanal Chem. 396, 359-364, 1995, with kind permission from Elsevier Sciences S.A.)... Figure 15. Complex plane impedance plots for polypyrrole at (A) 0.1, (B) -0.1, (C) -0.2, (D) -0.3, and (E) -0.4 V vs. Ag/AgCl in NaCl04(aq). The circled points are for a bare Pt electrode. Frequencies of selected points are marked in hertz. (Reprinted from X. Ren and P. O. Pickup, Impedance measurements of ionic conductivity as a probe of structure in electrochemi-cally deposited polypyrrole films, / Electmanal Chem. 396, 359-364, 1995, with kind permission from Elsevier Sciences S.A.)...
Otero and co-workers208,212 have visually observed nuclei of oxidized polymer in thin polypyrrole films on electrodes. They attribute these to sites of counter-ion and solvent ingress. A nucleation model based on the growth of ionically conductive zones provides good agreement with experimental chronoamperometric responses. [Pg.585]

As outlined in chapter 1 the term electrode is used - contrary to the suggestion of W. Nemst - to designate the electronically conducting phase only, the term electrolyte solution covers all types of ionically conducting phases (solutions, melts, solids) being in contact with the former phase. [Pg.264]

Because of the interaction between the electrode surface and the various species present in the ionic phase an excess of charged species may be present on the ionically conducting side of the phase boundary. Its extent depends upon the actual electrode potential. At a certain electrode potential this excess vanishes, the corresponding potential value is called potential of zero charge. Knowledge of this... [Pg.400]


See other pages where Ionic conductivity electrodes is mentioned: [Pg.137]    [Pg.137]    [Pg.1939]    [Pg.577]    [Pg.578]    [Pg.579]    [Pg.18]    [Pg.526]    [Pg.257]    [Pg.2409]    [Pg.153]    [Pg.449]    [Pg.215]    [Pg.224]    [Pg.225]    [Pg.500]    [Pg.544]    [Pg.545]    [Pg.547]    [Pg.562]    [Pg.569]    [Pg.129]    [Pg.575]    [Pg.611]    [Pg.238]    [Pg.270]    [Pg.274]    [Pg.400]    [Pg.410]   
See also in sourсe #XX -- [ Pg.149 , Pg.152 , Pg.237 , Pg.244 , Pg.245 , Pg.246 , Pg.247 ]




SEARCH



Conductance electrodes

Electrodes conductivity

Ionic conductance

Ionic conducting

Ionic conduction

Ionic conductivity

Ionic electrode

© 2024 chempedia.info