Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionic compounds transition state

Kinetic data can be discussed in terms of bromine bridging in ionic intermediates if the transition states of the ionization step are late. It appears that this is the case in the bromination of a wide variety of olefins, and in particular of alkenes, stilbenes and styrenes. Large p- and m-values for kinetic substituent and solvent effects (p. 253) consistent with high degrees of charge development at the transition states, are found for the reaction of these compounds. It can therefore be concluded that their transition states closely resemble the ionic intermediates. [Pg.225]

Clearly, U is the biggest number in the cycle and is the main driving force for the formation of ionic compounds. Nevertheless, the other factors can tip the balance one way or another. For example, AHSub is particularly large for the transition metals niobium, tantalum, molybdenum, tungsten, and rhenium, with the result that, in their lower oxidation states, they do not form simple ionic compounds such as ReCl3 but rather form compounds that contain clusters of bonded metal atoms (in this example, Re3 clusters are involved, so the formula is better written ResClg). [Pg.91]

The alkali metals share many common features, yet differences in size, atomic number, ionization potential, and solvation energy leads to each element maintaining individual chemical characteristics. Among K, Na, and Li compounds, potassium compounds are more ionic and more nucleophilic. Potassium ions form loose or solvent-separated ion pairs with counteranions in polar solvents. Large potassium cations tend to stabilize delocalized (soft) anions in transition states. In contrast, lithium compounds are more covalent, more soluble in nonpolar solvents, usually existing as aggregates (tetramers and hexamers) in the form of tight ion pairs. Small lithium cations stabilize localized (hard) counteranions (see Lithium and lithium compounds). Sodium chemistry is intermediate between that of potassium and lithium (see Sodium and sodium alloys). [Pg.516]

In the classical Passerini reaction [11], an isocyanide is condensed with a carbonyl compound and a carboxylic acid to afford a-acyloxyamides 7 (Scheme 1.2). When the carbonyl compound is prochiral, a new stereogenic center is generated. It is generally accepted that the reaction proceeds through intermediate 6, which rearranges to the product. The way this intermediate is formed is more debated. A possibility is a concerted non-ionic mechanism involving transition state 5. Since the simultaneous union of three molecules is not a very likely process, another possibility is a stepwise mechanism, with the intermediacy of a loosely bonded adduct 4 between the carbonyl compound and the carboxylic acid [2], Since all three... [Pg.2]

As has been pointed out previously, ionic compounds are characterized by a Fermi level EF that is located within an s-p-state energy gap Ef. It is for this reason that ionic compounds are usually insulators. However, if the ionic compound contains transition element cations, electrical conductivity can take place via the d electrons. Two situations have been distinguished the case where Ru > Rc(n,d) and that where Rlt < Rc(n,d). Compounds corresponding to the first alternative have been discussed in Chapter III, Section I, where it was pointed out that the presence of similar atoms on similar lattice sites, but in different valence states, leads to low or intermediate mobility semiconduction via a hopping of d electrons over a lattice-polarization barrier from cations of lower valence to cations of higher valence. In this section it is shown how compounds that illustrate the second alternative, Rtt < 72c(n,d), may lead to intermediate mobility, metallic conduction and to martensitic semiconductor metallic phase transitions. [Pg.249]

From the discussion of Chapter I, it follows that metallic conduction is to be associated with partially filled bands of collective-electron states. Since the s-p bands of an ionic compound are either full or empty, metallic conduction implies partially filled d bands, and collective d electrons imply Rtt < Rc(n,d). From the requirement Rtt < Rc(n4) it is apparent that the metallic conduction in ionic compounds must be restricted either to transition element compounds in which the anions are relatively small or to compounds with a cation/anion ratio > 1. Also Rc(n,d) decreases, for a given n, with increasing atomic number, that is with increasing nuclear charge, and the presence of eQ electrons increases the effective size of an octahedral cation (627) (see Fig. 66) and similarly UQ electrons the size of a tetrahedral cation. It follows that If the cation/anion ratio < 1, MO d electrons are more probable in ionic compounds with octahedral-site cations if the cations contain three or less d electrons MO d electrons are more probable in ionic compounds with tetrahedral-site cations if the cations contain two or less d electrons. [Pg.249]

Reaction of a stable carbene with iodine results in compound 46, which can be considered an isolated transition state which models the nucleophilic attack of the carbene on the iodine molecule (Scheme 25).55 The iodine-iodine bond js significantly lengthened and the carbon iodine bond distance of 2.104(3) A is slightly elongated when compared to that of iodoarenes. The authors report that protic solvents promote ionic dissociation to the 2-iodoimidazolium ion which is isoelectronic with the tellerium adduct 44. [Pg.34]

Not only intramolecularly ionic compounds such as dipolar meropolymethine dyes, but also EPD/EPA complexes [cf. Section 2.2.6) with an intermolecular charge-transfer (CT) absorption can exhibit a pronounced solvatoehromism. The CT transition also involves ground and excited states with very different dipole moments. This suggests that the CT absorption band should exhibit marked solvent polarity effects [17, 63, 64]. [Pg.334]

Metals with high oxidation numbers tend to act somewhat like nonmetals. For example, many transition metals form oxoanions, such as permanganate ion, chromate ion, and dichromate ion, in which the metal is covalently bonded to oxygen. The ability to form covalent bonds to oxygen is evidence of these metals more covalent nature. (In their low oxidation states, most metals typically exist in ionic compounds as monatomic cations.) Titanium(lV) chloride is an example of a compound in which the... [Pg.451]


See other pages where Ionic compounds transition state is mentioned: [Pg.12]    [Pg.450]    [Pg.1433]    [Pg.174]    [Pg.95]    [Pg.103]    [Pg.15]    [Pg.82]    [Pg.163]    [Pg.92]    [Pg.167]    [Pg.357]    [Pg.172]    [Pg.36]    [Pg.78]    [Pg.12]    [Pg.59]    [Pg.468]    [Pg.227]    [Pg.207]    [Pg.207]    [Pg.26]    [Pg.550]    [Pg.154]    [Pg.1143]    [Pg.24]    [Pg.556]    [Pg.43]    [Pg.338]    [Pg.1143]    [Pg.63]    [Pg.545]    [Pg.4411]    [Pg.14]    [Pg.1132]    [Pg.45]    [Pg.20]    [Pg.51]    [Pg.32]   
See also in sourсe #XX -- [ Pg.247 , Pg.251 ]




SEARCH



Ionic compounds

Ionic state

Ionic transition states

State) compounds

Transition compounds

© 2024 chempedia.info