Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionic barrier

Mode of Motion. Nicotine, anabasine, and imidocloprid affect the ganglia of the insect central nervous system, faciUtating transsynaptic conduction at low concentrations and blocking conduction at higher levels. The extent of ionisation of the nicotinoids plays an important role in both their penetration through the ionic barrier of the nerve sheath to the site of action and in their interaction with the site of action, which is befleved to be the acetylcholine receptor protein. There is a marked similarity in dimensions between acetylcholine and the nicotinium ion. [Pg.269]

Thus nicotinoids that have the highest insecticidal action have the highest piC and, consequently, exist largely in the ionized form at physiological pH. This produces the anomaly that the compounds that are most highly ionized react most rapidly with the receptor protein, yet they are less able to penetrate through the ionic barrier surrounding the insect nerve synapse. [Pg.269]

The presence of the large repulsive potential barrier between the secondary minimum and contact prevents flocculation. One can thus see why increasing ionic strength of a solution promotes flocculation. The net potential per unit area between two planar surfaces is given approximately by the combination of Eqs. V-31 and VI-22 ... [Pg.241]

Hi) Surface blockers. Type 1 tlie inliibiting molecules set up a geometrical barrier on tlie surface (mostly by adsorjDtion) such as a variety of ionic organic molecules. The effectiveness is directly related to tlie surface coverage. The effect is a lowering of tlie anodic part of tlie polarization curve witliout changing tlie Tafel slope. [Pg.2730]

A. (The gas phase estimate is about 100 picoseconds for A at 1 atm pressure.) This suggests tliat tire great majority of fast bimolecular processes, e.g., ionic associations, acid-base reactions, metal complexations and ligand-enzyme binding reactions, as well as many slower reactions that are rate limited by a transition state barrier can be conveniently studied with fast transient metliods. [Pg.2948]

At lower frequencies, orientational polarization may occur if the glass contains permanent ionic or molecular dipoles, such as H2O or an Si—OH group, that can rotate or oscillate in the presence of an appHed electric field. Another source of orientational polarization at even lower frequencies is the oscillatory movement of mobile ions such as Na". The higher the amount of alkaH oxide in the glass, the higher the dielectric constant. When the movement of mobile charge carriers is obstmcted by a barrier, the accumulation of carriers at the interface leads to interfacial polarization. Interfacial polarization can occur in phase-separated glasses if the phases have different dielectric constants. [Pg.333]

For an ion to move through the lattice, there must be an empty equivalent vacancy or interstitial site available, and it must possess sufficient energy to overcome the potential barrier between the two sites. Ionic conductivity, or the transport of charge by mobile ions, is a diffusion and activated process. From Fick s Law, J = —D dn/dx), for diffusion of a species in a concentration gradient, the diffusion coefficient D is given by... [Pg.351]

Two kinds of barriers are important for two-phase emulsions the electric double layer and steric repulsion from adsorbed polymers. An ionic surfactant adsorbed at the interface of an oil droplet in water orients the polar group toward the water. The counterions of the surfactant form a diffuse cloud reaching out into the continuous phase, the electric double layer. When the counterions start overlapping at the approach of two droplets, a repulsion force is experienced. The repulsion from the electric double layer is famous because it played a decisive role in the theory for colloidal stabiUty that is called DLVO, after its originators Derjaguin, Landau, Vervey, and Overbeek (14,15). The theory provided substantial progress in the understanding of colloidal stabihty, and its treatment dominated the colloid science Hterature for several decades. [Pg.199]

The commercial availability of ionic liquids is thus a key factor for the actual success of ionic liquid methodology. Apart from the matter of lowering the activation barrier for those synthetic chemists interested in entering the field, it allows access to ionic liquids for those communities that do not traditionally focus on synthetic work. Physical chemists, engineers, electrochemists, and scientists interested in developing new analytical tools are among those who have already developed many new exciting applications by use of ionic liquids [11]. [Pg.22]

Transport numbers are intended to measure the fraction of the total ionic current carried by an ion in an electrolyte as it migrates under the influence of an applied electric field. In essence, transport numbers are an indication of the relative ability of an ion to carry charge. The classical way to measure transport numbers is to pass a current between two electrodes contained in separate compartments of a two-compartment cell These two compartments are separated by a barrier that only allows the passage of ions. After a known amount of charge has passed, the composition and/or mass of the electrolytes in the two compartments are analyzed. Erom these data the fraction of the charge transported by the cation and the anion can be calculated. Transport numbers obtained by this method are measured with respect to an external reference point (i.e., the separator), and, therefore, are often referred to as external transport numbers. Two variations of the above method, the Moving Boundary method [66] and the Eiittorff method [66-69], have been used to measure cation (tR+) and anion (tx ) transport numbers in ionic liquids, and these data are listed in Table 3.6-7. [Pg.121]


See other pages where Ionic barrier is mentioned: [Pg.149]    [Pg.454]    [Pg.301]    [Pg.123]    [Pg.446]    [Pg.446]    [Pg.171]    [Pg.178]    [Pg.311]    [Pg.382]    [Pg.171]    [Pg.178]    [Pg.71]    [Pg.592]    [Pg.149]    [Pg.454]    [Pg.301]    [Pg.123]    [Pg.446]    [Pg.446]    [Pg.171]    [Pg.178]    [Pg.311]    [Pg.382]    [Pg.171]    [Pg.178]    [Pg.71]    [Pg.592]    [Pg.242]    [Pg.2222]    [Pg.2946]    [Pg.10]    [Pg.440]    [Pg.197]    [Pg.372]    [Pg.27]    [Pg.306]    [Pg.136]    [Pg.533]    [Pg.353]    [Pg.345]    [Pg.266]    [Pg.1308]    [Pg.303]    [Pg.324]    [Pg.408]    [Pg.178]   
See also in sourсe #XX -- [ Pg.446 ]

See also in sourсe #XX -- [ Pg.446 ]

See also in sourсe #XX -- [ Pg.446 ]

See also in sourсe #XX -- [ Pg.463 ]




SEARCH



Ionic migration, barrier height

Ionic potential barriers

© 2024 chempedia.info