Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iodine unsaturation

Iodine vapour Place the dried plate in a sealed tank containing a few iodine crystals Dark yellow-brown spots appear within a few minutes where lipids have absorbed the iodine. Unsaturated lipids are more intensely stained. Glycolipids do not stain significantly... [Pg.436]

Some iodoxoles coming from aliphatic precursors are also known [58]. A unique 1,2-iodoxetane fused to a dihydroiodoxole was obtained upon oxidation of an iodinated unsaturated bis alcohol (Scheme 18) [59]. [Pg.78]

The iodine number of fats and oils provides a quantitative measurement of the degree of unsaturation. A solution containing a 100% excess of IGl is added to the sample, reacting across the double-bonded sites of unsaturation. The excess IGl is converted to I2 by adding KI. The resulting I2 is reacted with a known excess of Na2S203. To complete the analysis the excess 8203 is back titrated with coulometrically generated I2. [Pg.534]

Measurement of Unsaturation. The presence of double bonds in a fatty acid side chain can be detected chemically or through use of instmmentation. Iodine value (IV) (74) is a measure of extent of the reaction of iodine with double bonds the higher the IV, the more unsaturated the oil. IV may also be calculated from fatty acid composition. The cis—trans configuration of double bonds may be deterrnined by infrared (59) or nmr spectroscopy. Naturally occurring oils have methylene-intermpted double bonds that do not absorb in the uv however, conjugated dienes maybe deterrnined in an appropriate solvent at 233 nm. [Pg.134]

When heated with small amounts of iodine, rosins, taU. oil, and other wood products are converted to more stable forms (135,136). Iodine has been used with some tin salts as a catalyst in the hydrogenation of coal (qv) and its distillation products (137,138), and has been recommended as a catalyst for the production of drying oils (qv) from unsaturated animal fats (139,140). [Pg.367]

Naphthenic acids occur ia a wide boiling range of cmde oil fractions, with acid content increa sing with boiling point to a maximum ia the gas oil fraction (ca 325°C). Jet fuel, kerosene, and diesel fractions are the source of most commercial naphthenic acid. The acid number of the naphthenic acids decreases as heavier petroleum fractions are isolated, ranging from 255 mg KOH/g for acids recovered from kerosene and 170 from diesel, to 108 from heavy fuel oil (19). The amount of unsaturation as indicated by iodine number also increases in the high molecular weight acids recovered from heavier distillation cuts. [Pg.510]

To analy2e fatty amines, both wet and instmmental methods of analysis are used. Wet methods routinely used are total amine value (ASTM Method D2073) combining weight or neutralization equivalent primary, secondary, and tertiary amine content (ASTM Method D2083) moisture, Kad-Fischer (ASTM Method D2072) and iodine value, measure of unsaturation (ASTM Method D2075). These provide important information on physical and chemical characteristics of the amine products used in various appHcation areas (8,76,81). In addition to the ASTM methods available, the American Oil Chemists Society has developed methods of analysis for fatty amines (82). [Pg.223]

Composition. Shellac is primarily a mixture of aUphatic polyhydroxy acids in the form of lactones and esters. It has an acid number of ca 70, a saponification number of ca 230, a hydroxyl number of ca 260, and an iodine number of ca 15. Its average molecular weight is ca 1000. Shellac is a complex mixture, but some of its constituents have been identified. Aleuritic acid, an optically inactive 9,10,16-trihydroxypalmitic acid, has been isolated by saponification. Related carboxyflc acids such as 16-hydroxy- and 9,10-dihydroxypalmitic acids, also have been identified after saponification. These acids may not be primary products of hydrolysis, but may have been produced by the treatment. Studies show that shellac contains carboxyflc acids with long methylene chains, unsaturated esters, probably an aliphatic aldehyde, a saturated aliphatic ester, a primary alcohol, and isolated or unconjugated double bonds. [Pg.141]

Bromine is used as an analytical reagent to determine the amount of unsaturation in organic compounds because carbon—carbon double bonds add bromine quantitatively, and for phenols which add bromine in the ortho and para positions. Standard bromine is added in excess and the amount unreacted is deterrnined by an indirect iodine titration. Bromine is also used to oxidize several elements, such as T1(I) to T1(III). Excess bromine is removed by adding phenol. Bromine plus an acid, such as nitric and/or hydrochloric, provides an oxidizing acid mixture usefiil in dissolving metal or mineral samples prior to analysis for sulfur. [Pg.288]

An important chemical characteristic of unsaturated acids is the iodine value (IV), which indicates the average degree of unsaturation. It is equal to the number of grams of iodine absorbed under standard conditions by 100 g of the unsaturated acid. [Pg.83]

Addition to the Double Bond. Chlorine, bromine, and iodine react with aHyl chloride at temperatures below the inception of the substitution reaction to produce the 1,2,3-trihaLides. High temperature halogenation by a free-radical mechanism leads to unsaturated dihalides CH2=CHCHC1X. Hypochlorous and hypobromous acids add to form glycerol dihalohydrins, principally the 2,3-dihalo isomer. Dehydrohalogenation with alkah to epicbl orobydrin [106-89-8] is ofgreat industrial importance. [Pg.33]

The determination of iodine value (IV), AOCS Tg 1-64, is sometimes used to determine the extent of unsaturation. Because the tertiary aUyflc hydrogen ia the compounds is capable of substitution by halogen atoms, this only approximates a value for the degree of unsaturation. [Pg.116]

The composition of an oil and the progress of its hydrogenation is expressed in terms of its iodine value (IV). Edible oils are mixtures of unsaturated compounds with molecular weights in the vicinity of 300. The IV is a measure of this unsaturation. It is found by a standardized procedure. A solution of ICl in a mixture of acetic acid and carbon tetrachloride is mixed in with the oil and allowed to reac t to completion, usually for less than I h. Halogen addition takes place at the double bond, after which the amount of unreacted iodine is determined by analysis. The reaction is... [Pg.2112]

Degree of unsaturation. Unsaturation accounts for the existence of carbon-carbon double bonds in resins. It is generally indicated by the bromine or iodine number. Both methods are based on the halogen addition to the double carbon-carbon bonds. Because the different reactivity of bromine and iodine, both numbers cannot be compared. The bromine or iodine number does not necessarily correlate with the reactivity of the resin, for instance in the ageing process. However, within a given resin series of the same structure, relative comparisons can be made. [Pg.615]

The treatment of unsaturated substances with halogen leads to addition to these molecules. This is true not only of bromine and chlorine vapor but also of the less reactive iodine. Substitution also occurs in the presence of light. Examples of such halogenations are listed in Table 12. Figure 32 illustrates the characterization of fluorescein in a bubble bath preparation. Bromination of the fluorescein in the start zone yields eosin. [Pg.64]

Unsaturated compounds containing both a double bond and a charactensbc group such as hydroxyl, carbonyl, or nitnle or an organophosphorus, -selenium sulfur, -iodine, or -boron group are also included in this section even when only the double bond IS oxidized... [Pg.322]

A number of dihydroquinolines have been prepared by treating aniline derivatives with acetone or mesityl oxide in the presence of iodine. In these cases aromatization to the fully unsaturated quinoline would require the loss of methane, a process known as the Riehm quinoline synthesis. Such Skraup/Doebner-von Miller-type reactions are often low yielding due to large amounts of competing polymerization. For example, aniline 37 reacts with mesityl oxide to give dihydroquinolines 39, albeit in low yield. ... [Pg.492]

Some unsaturated compounds are capable of quantitative hydrogenation in a solution of colloidal palladium. It has been found that a hydrogen number corresponding to the iodine number of fatty oils may be ascribed to some ethereal oils. [Pg.355]

The classic chemical technique for measuring the degree of unsaturation in diene polymers is iodometry (iodine value) [102]. Kubo et al. [103] extensively measured the iodine value to determine the amount of residual double bonds present in the HNBR. However, this method exhibited significantly poorer precision as compared with IR and NMR spectroscopies [99-101]. Acid... [Pg.569]

The adjacent iodine and lactone groupings in 16 constitute the structural prerequisite, or retron, for the iodolactonization transform.15 It was anticipated that the action of iodine on unsaturated carboxylic acid 17 would induce iodolactonization16 to give iodo-lactone 16. The cis C20-C21 double bond in 17 provides a convenient opportunity for molecular simplification. In the synthetic direction, a Wittig reaction17 between the nonstabilized phosphorous ylide derived from 19 and aldehyde 18 could result in the formation of cis alkene 17. Enantiomerically pure (/ )-citronellic acid (20) and (+)-/ -hydroxyisobutyric acid (11) are readily available sources of chirality that could be converted in a straightforward manner into optically active building blocks 18 and 19, respectively. [Pg.235]

A cursory inspection of key intermediate 8 (see Scheme 1) reveals that it possesses both vicinal and remote stereochemical relationships. To cope with the stereochemical challenge posed by this intermediate and to enhance overall efficiency, a convergent approach featuring the union of optically active intermediates 18 and 19 was adopted. Scheme 5a illustrates the synthesis of intermediate 18. Thus, oxidative cleavage of the trisubstituted olefin of (/ )-citronellic acid benzyl ester (28) with ozone, followed by oxidative workup with Jones reagent, affords a carboxylic acid which can be oxidatively decarboxylated to 29 with lead tetraacetate and copper(n) acetate. Saponification of the benzyl ester in 29 with potassium hydroxide provides an unsaturated carboxylic acid which undergoes smooth conversion to trans iodolactone 30 on treatment with iodine in acetonitrile at -15 °C (89% yield from 29).24 The diastereoselectivity of the thermodynamically controlled iodolacto-nization reaction is approximately 20 1 in favor of the more stable trans iodolactone 30. [Pg.239]

Unsaturated carboxylic acid 17 possesses the requisite structural features for an iodolactonization reaction.16 A source of electrophilic iodine could conceivably engage either diastereoface of the A20,21 double bond in 17. The diastereomeric iodonium ion inter-... [Pg.241]


See other pages where Iodine unsaturation is mentioned: [Pg.82]    [Pg.459]    [Pg.82]    [Pg.459]    [Pg.1957]    [Pg.443]    [Pg.132]    [Pg.132]    [Pg.269]    [Pg.277]    [Pg.316]    [Pg.103]    [Pg.34]    [Pg.151]    [Pg.535]    [Pg.91]    [Pg.438]    [Pg.391]    [Pg.289]    [Pg.84]    [Pg.609]    [Pg.195]    [Pg.253]    [Pg.61]    [Pg.57]    [Pg.12]    [Pg.169]    [Pg.625]    [Pg.77]    [Pg.234]    [Pg.693]   
See also in sourсe #XX -- [ Pg.116 ]




SEARCH



© 2024 chempedia.info