Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iodides, molten

Hydrogen Iodide. Molten potassium chlorate ignites HI gas.5... [Pg.490]

TBABr, HDTAB Aryl iodides Molten salts as reaction medium [48]... [Pg.336]

Moist iodine vapor rapidly corrodes metals, including most stainless steels. The initial process is the formation of corrosion centers where small amounts of metal iodide are formed which deHquesce, and the corrosion then takes place electrochemically (41,42). Only titanium and molybdenum steels are unattacked by iodine (42,43). The corrosion of molten iodine has also been studied. [Pg.360]

Lithium Iodide. Lithium iodide [10377-51 -2/, Lil, is the most difficult lithium halide to prepare and has few appHcations. Aqueous solutions of the salt can be prepared by carehil neutralization of hydroiodic acid with lithium carbonate or lithium hydroxide. Concentration of the aqueous solution leads successively to the trihydrate [7790-22-9] dihydrate [17023-25-5] and monohydrate [17023-24 ] which melt congmendy at 75, 79, and 130°C, respectively. The anhydrous salt can be obtained by carehil removal of water under vacuum, but because of the strong tendency to oxidize and eliminate iodine which occurs on heating the salt ia air, it is often prepared from reactions of lithium metal or lithium hydride with iodine ia organic solvents. The salt is extremely soluble ia water (62.6 wt % at 25°C) (59) and the solutions have extremely low vapor pressures (60). Lithium iodide is used as an electrolyte ia selected lithium battery appHcations, where it is formed in situ from reaction of lithium metal with iodine. It can also be a component of low melting molten salts and as a catalyst ia aldol condensations. [Pg.226]

Many organic hahdes, especially alkyl bromides and iodides, react direcdy with tin metal at elevated temperatures (>150° C). Methyl chloride reacts with molten tin metal, giving good yields of dimethyl tin dichloride, which is an important intermediate in the manufacture of dimethyl tin-ha sed PVC stabilizers. The presence of catalytic metallic impurities, eg, copper and zinc, is necessary to achieve optimum yields (108) ... [Pg.72]

G. J. Janz, R. P. T. Tomkins, C. B. Allen, J. R. Downey, Jr., and K. Singer, J. Rhys. Chem. Ref Data 6 (1977) 409 Molten Salts, Vol. 4, Part 3 Bromides and Mixtures Iodides and Mixtures, American Chemical Society-American Institute of Physics-National Bureau of Standards, Washington, DC, 1977. [Pg.198]

The rhodium catalyzed carbonylation of ethylene and methanol can be conducted in the absence of added alkyl halide if the reactions are conducted in iodide based ionic liquids or molten salts. In the case of ethylene carbonylation, the imidazolium iodides appeared to perform best and operating in the absence of ethyl iodide gave improved selectivities relative to processes using ethyl iodide and ionic hquids. In the case of... [Pg.337]

In the case of molten salts, the functional electrolytes are generally oxides or halides. As examples of the use of oxides, mention may be made of the electrowinning processes for aluminum, tantalum, molybdenum, tungsten, and some of the rare earth metals. The appropriate oxides, dissolved in halide melts, act as the sources of the respective metals intended to be deposited cathodically. Halides are used as functional electrolytes for almost all other metals. In principle, all halides can be used, but in practice only fluorides and chlorides are used. Bromides and iodides are thermally unstable and are relatively expensive. Fluorides are ideally suited because of their stability and low volatility, their drawbacks pertain to the difficulty in obtaining them in forms free from oxygenated ions, and to their poor solubility in water. It is a truism that aqueous solubility makes the post-electrolysis separation of the electrodeposit from the electrolyte easy because the electrolyte can be leached away. The drawback associated with fluorides due to their poor solubility can, to a large extent, be overcome by using double fluorides instead of simple fluorides. Chlorides are widely used in electrodeposition because they are readily available in a pure form and... [Pg.697]

The formation of ad-quinonoid transient intermediates by electronic excitation has been identified spectroscopically. Proton abstractors (bases) such as sodium hydroxide, potassium iodide or tetramethylammonium octahydrotriborate induce deflagration in molten TNT. [Pg.883]

Molten potassium chlorate ignites hydrogen iodide gas. [Pg.1374]

Impact causes a mixture of potassium and anhydrous hydrogen chloride to explode very violently [1], Molten potassium ignites in contact with hydrogen chloride, hydrogen bromide or hydrogen iodide [2],... [Pg.1725]

Since over-ozonisation must be in any case avoided, attach a second wash bottle containing acid potassium iodide solution to the outlet tube of the first before the calculated time has elapsed. If no ground glass joint1 is available, use a long bored cork stopper which has been dipped in molten paraffin wax. [Pg.385]

Binary Compounds. The thermodynamics of the formation of HfCl2, of HfCl4, fused sodium and potassium chlorides have been described. The reduction of ZrXj (X = Cl, Br, or I) with metallic Zr or A1 in molten AICI3 has been studied at temperatures from 250 to 360 °C, depending on the halide. The electronic spectra of the initial reaction products were consistent with either a solvated Zr complex or an intervalence Zr "-Zr" species. Further reduction resulted in the precipitation of reduction products which were identified by analysis and i.r., electronic, and X-ray powder diffraction spectra. The stability of the trihalides with respect to disproportionation was observed to increase from chloride to iodide thus ZrC and ZrCl2,0.4AlCl3 were precipitated, whereas only Zrlj was formed. ... [Pg.29]

Bismuth reacts with chlorine, bromine and iodine vapors forming chloride, bromide and iodide of the metal, respectively. Molten bismuth and sulfur combine to form bismuth sulfide, Bi2S3. [Pg.109]

Sodium combines with all halogens forming sodium hahdes. The metal ignites with fluorine, forming hydrogen fluoride. Thin metal film reacts readily with chlorine and bromine at ordinary temperatures. Molten sodium burns in chlorine producing sodium chloride. The metal reacts with iodine, only in vapor phase, forming sodium iodide. [Pg.850]

Magnesium chloride and excess magnesium are removed by distillation at reduced pressure. Pure zirconium may be prepared by several methods that include iodide decomposition process, zone refining, and electron beam melting. Also, Zr metal may be electrorefined in a molten salt bath of potassium zirconium fluoride, K2ZrFe... [Pg.997]

Room temperature molten salt systems based on methyl-hexyl-imidazolium iodide appear to afford particular advantages over organic liquids as solvents for solar cell electrolytes. Cell performance showed outstanding stability, with an estimated sensitizer turnover in excess of 50 million (Papageorgiou et al., 1996). [Pg.171]

Na Cj, mw 70.00 whpdr, d 1.575 at 15°, mp decomp ca 400 in sol in common org solvents. It reacts explosively on contact with w and forms expl mixts with oxidizers, phosphorus, some metals, chlorides and iodides. Was first prepd by Berthelot (Ref 2) fcom CjHa and molten Na. Matignon (Ref 3) prepd it by heating mono sodium acetylide to 210-220°. Guernsey Sherman (Ref 4) describe in detail apparatus and procedure by bubbling acetylene through molten Na. [Pg.82]

Methanol can be converted to hydrocarbons over acidic catalysts. However, with the exception of some zeolites, most catalysts deactivate rapidly. The first observation of hydrocarbon formation from methanol in molten ZnCl2 was reported in 1880, when decomposition of methanol was described to yield hexamethylbenzene and methane.414 Significant amounts of light hydrocarbons, mostly isobutane, were formed when methanol or dimethyl ether reacted over ZnCl2 under superatmo-spheric pressure.415 More recently, bulk zinc bromide and zinc iodide were found to convert methanol to gasoline range (C4-C13) fraction (mainly 2,2,3-trimethyl-butane) at 200°C with excellent yield (>99%).416... [Pg.118]

Tellurium and iodine, in the molten condition, are miscible in all proportions, and the system tellurium-iodine has been examined from the thermo-analytical standpoint, the freezing-point curve giving indications only of the formation of a tetra-iodide, Tel4, in the fused mixture.1... [Pg.378]

Rh compounds exhibit valences of 2, 3, 4, and 6. The tnvalent form is by far the most stable. When Rh is heated in air, it becomes coated with a film of oxide. Rhodium(III) oxide, Rh Os, can be prepared by heating the finely divided metal or its nitrate in air or O2. The rhodium IV) oxide is also known. Rhodium trihydroxide may be precipitated as a yellow compound by adding the stoichiometric amount of KOH to a solution of RhCb. The hydroxide is soluble in adds and excess base. When the freshly precipitated Rh(OH) is dissolved in HC1 at a controlled pH, a yellow solution is first obtained in which the aquochloro complex of Rh behaves as a cation. The hexachlororhodatetHI) anion is formed when the solution is boiled for 1 hour with excess HC1. The solution chemistry of RI1CI3 is often very complex. Two trichlorides of Rh aie known The trichloride formed by high-temperature combination of the elements is a red, crystalline, nonvolatile compound, insoluble in all aads. When Rh is heated in molten NaCl and treated with Clo, Na RJiClg is formed, a soluble salt that forms a hydrate in solution. Rhodium(III) iodide is formed by the addition of KI to a hot solution of tnvalent Rh. [Pg.1445]


See other pages where Iodides, molten is mentioned: [Pg.445]    [Pg.345]    [Pg.37]    [Pg.431]    [Pg.165]    [Pg.431]    [Pg.227]    [Pg.978]    [Pg.269]    [Pg.393]    [Pg.134]    [Pg.11]    [Pg.63]    [Pg.75]    [Pg.415]    [Pg.92]    [Pg.114]    [Pg.172]    [Pg.204]    [Pg.388]    [Pg.549]    [Pg.580]    [Pg.599]    [Pg.600]    [Pg.251]    [Pg.1666]    [Pg.32]    [Pg.179]   
See also in sourсe #XX -- [ Pg.228 ]




SEARCH



© 2024 chempedia.info