Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Inverse esters

The phenyl ether linkage of butoxy substituted 44 was cleaved with boron tribromide to give a hexaphenol derivative (45) in 60% yield (Scheme 14). The hexaphenol derivative was found to be remarkably soluble in most polar organic solvents, such as ethanol, DMF, DMSO, and dioxane, as well as in aqueous base solution. Condensation with octanoic acid in the presence of DCC and catalytic H+ afforded the inverse ester (46) in high yield. [Pg.95]

The importance of electron-deficient coupling substrates is furthermore illustrated in the unsuccessful attempt to couple (A/)-2,2 -bis(2-bromo-l-phenoxymethyl)-U -binaphthalene283 and in the very poor chemical yields (11 %) in coupling the inverse ester (P)-2,2 -bis(l-bro-mo-2-naphthalenoxycarbonyl)-l,T-binaphthalene33. [Pg.578]

Formation of a Tr-allylpalladium complex 29 takes place by the oxidative addition of allylic compounds, typically allylic esters, to Pd(0). The rr-allylpal-ladium complex is a resonance form of ir-allylpalladium and a coordinated tt-bond. TT-Allylpalladium complex formation involves inversion of stereochemistry, and the attack of the soft carbon nucleophile on the 7r-allylpalladium complex is also inversion, resulting in overall retention of the stereochemistry. On the other hand, the attack of hard carbon nucleophiles is retention, and hence Overall inversion takes place by the reaction of the hard carbon nucleophiles. [Pg.15]

The mechanisms by which sulfonate esters undergo nucleophilic substitution are the same as those of alkyl halides Inversion of configuration is observed m 8 2 reac tions of alkyl sulfonates and predominant inversion accompanied by racemization m 8 1 processes... [Pg.353]

The hydrolysis of sulfonate esters of 2 octanol is stereospecific and proceeds with complete inversion of configuration Write a structural formula that shows the stereochemistry of the 2 octanol formed by hydrolysis of an opti cally pure sample of (S) (+) 1 methylheptyl p toluenesulfonate identify the prod uct as / or S and deduce its specific rotation... [Pg.353]

Optically active 2-arylalkanoic acid esters have been prepared by the Friedel-Crafts alkylation of arenes with optically active a-sulfonyloxy esters (40). Friedel-Crafts alkylation of ben2ene with (5)-methyl 2-(chlorosulfonyloxy)- or 2-(mesyloxy)propionate proceeded with predorninant inversion of configuration (<97%) to give (5)-methyl 2-phenylpropionate. [Pg.554]

In view of the ready availabiUty of optically pure lactic acid derivatives this reaction offers an attractive general method for the preparation of optically pure aromatic ester derivatives (41). Stereoselective alkylation (15—60% inversion) of ben2ene with optically active 1,2- 1,3- and 1,5-dihaloalkanes was also reported (42). [Pg.554]

Acidic Cation-Exchange Resins. Brmnsted acid catalytic activity is responsible for the successful use of acidic cation-exchange resins, which are also soHd acids. Cation-exchange catalysts are used in esterification, acetal synthesis, ester alcoholysis, acetal alcoholysis, alcohol dehydration, ester hydrolysis, and sucrose inversion. The soHd acid type permits simplified procedures when high boiling and viscous compounds are involved because the catalyst can be separated from the products by simple filtration. Unsaturated acids and alcohols that can polymerise in the presence of proton acids can thus be esterified directiy and without polymerisation. [Pg.564]

H-Azepine, 2,6,7-tri(methoxycarbonyl)-ring inversion, 7, 499 Azepine-1-carboxylic acid tricarbonylruthenium complexes, 7, 523 1 H-Azepine-2,3-dicarboxylic acid, 4,7-dihydro-6-phenyl-diethyl ester synthesis, 7, 539-540 1 H-Azepine-3,6-dicarboxylic acid... [Pg.523]

Aziridine, 2,3-diphenyl-l-(2,4,6-trinitrophenyl)-irradiation, 7, 61 Aziridine, 1,2-divinyl-rearrangement, 7, 539 Aziridine, 2,3-divinyl-rearrangement, 7, 42, 65, 539 Aziridine, N-ethyl-inversion, 7, 6 Aziridine, 2-halo-reactions, 7, 74 Aziridine, A/-halo-invertomers, 7, 6 Aziridine, 2-methyl- N NMR, 7, 11 Aziridine, methylene-ring-ring valence isomerizations, 7, 22 synthesis, 7, 92 Aziridine, iV-nitroso-reactions, 7, 74 Aziridine, iV-phosphino-inversion, 7, 7 Aziridine, 1-phthalimido-UV irradiation, 7, 62-63 Aziridine, l-(3-thienyl)-2-vinyl-rearrangement, 4, 746 Aziridine, 7V-trimethylsilyl-inversion, 7, 7 Aziridine, 1,2,3-triphenyl-irradiation, 7, 61 Aziridine, vinyl-isomerization, S, 287 Aziridinecarboxylic acid ring expansion, 7, 262 Aziridine-2,2-dicarboxylic acid, 1-methoxy-diethyl ester... [Pg.527]

In such a process, the water molecule fonned in the elimination step is captured primarily fiom the fixmt side, leading to net retention of configuration for the alcohol. For the ester, the extent of retention and inversion is more balanced, although it vari among individual systems. It is clear om die data in Table 5.18 that the two pairs of stereoisomeric amines do not form the same intermediate, even though a simple mechanistic interpretation would sugg that both would fmm the 2-decalyl cation. The coUap of the ions to product is pvidoitly so rapid that diere is not time for relaxation of the initially formed intermediates to reach a common stnicture. [Pg.308]

Hexafluoropropyldiethylamine is a particularly useful reagent for conversion of secondary benzylic hydroxy esters into the corresponding secondary benzyl fluorides The reactions proceed with inversion of configuration and a high degree of stereospecificity [86, 87] (equation 53)... [Pg.221]

The reaction of diethyl tartrate with sulfur tetrafluonde at 25 °C results in replacement of one hydroxyl group, whereas at 100 °C, both hydroxyl groups are replaced by fluonne to form a,a -difluorosuccinate [762] The stereochemical outcome of the fluonnation of tartrate esters is retention of configuration at one of the chiral carbon atoms and inversion of configuration at the second chiral center [163,164, 165] Thus, treatment ofdimethyl(+)-L-tartrate with sulfur tetrafluonde gives dimethyl meso-a,a difluorosuccinate as the final product [163, 164], whereas dimethyl meso tartrate is converted into a racemic mixture of D- and L-a,a -difluorosuccmates [765] (equation 80)... [Pg.235]

The Mitsunobu reaction is usually used to introduce an ester with inversion of configuration. The use of this methodology on an anomeric hydroxyl was found to give only the /3-benzoate, whereas other methods gave mixtures of anomers. Improved yields are obtained in the Mitsunobu esterification when p-nitrobenzoic acid is used as the nucleophile/ Bis(dimethylamino) azodicarboxylate as an activating agent was... [Pg.174]

The Mitsunobu reaction is used to convert an alcohol and an acid into an ester by the formation of an activated alcohol (Ph3P, diethyl diazodicar-boxylate), which then undergoes displacement with inversion by the carboxylate. Although this reaction works very well, it suffers from the fact that large quantities of by-products are produced, which generally require removal by chromatography. [Pg.377]

Our development of the catalytic enantioselective inverse electron-demand cycloaddition reaction [49], which was followed by related papers by Evans et al. [38, 48], focused in the initial phase on the reaction of mainly / , y-unsaturated a-keto esters 53 with ethyl vinyl ether 46a and 2,3-dihydrofuran 50a (Scheme 4.34). [Pg.179]

The enantioselective inverse electron-demand 1,3-dipolar cycloaddition reactions of nitrones with alkenes described so far were catalyzed by metal complexes that favor a monodentate coordination of the nitrone, such as boron and aluminum complexes. However, the glyoxylate-derived nitrone 36 favors a bidentate coordination to the catalyst. This nitrone is a very interesting substrate, since the products that are obtained from the reaction with alkenes are masked a-amino acids. One of the characteristics of nitrones such as 36, having an ester moiety in the a position, is the swift E/Z equilibrium at room temperature (Scheme 6.28). In the crystalline form nitrone 36 exists as the pure Z isomer, however, in solution nitrone 36 have been shown to exists as a mixture of the E and Z isomers. This equilibrium could however be shifted to the Z isomer in the presence of a Lewis acid [74]. [Pg.233]

The major application of the Mitsunobu reaction is the conversion of a chiral secondary alcohol 1 into an ester 3 with concomitant inversion of configuration at the secondary carbon center. In a second step the ester can be hydrolyzed to yield the inverted alcohol 4, which is enantiomeric to 1. By using appropriate nucleophiles, alcohols can be converted to other classes of compounds—e.g. azides, amines or ethers. [Pg.204]

These workers used binary solvent systems over a range of mole fractions to determine, for each solute, the constants a and b of equation (8.2). For methyl and phenacyl esters, TLC was used, while overpressured layer chromatography (OPLC) was used for dansyl amino acids. Nurok and co-workers (11) also evaluated how the quality of a simulated separation varies with changing solvent strength by using the inverse distance function (IDF) or planar response function (PRF), as follows ... [Pg.176]

The use of tetra-n-butylammonium fluoride (54) in an aprotic solvent such as acetonitrile may be more advantageous. Foster and colleagues (19, 37) have effected an SN2 type of reaction using this reagent in the conversion of l,2 5,6-di-0-isopropylidene-3-0-p-tolylsulfonyl-D-allofura-nose into the C-3 epimeric fluorodeoxy derivative. Note that whereas potassium fluoride is ineffective in displacing secondary sulfonate esters in sugars, tetra-n-butylammonium fluoride is capable of effecting a displacement with Walden inversion even in a furanose drivative. [Pg.170]

It would be reasonable to expect that the decomposition of the N,N-dimethylimino ester chlorides proceeds via a bimolecular mechanism already demonstrated for the thermal decomposition of simple imino ester salts (79). In the carbohydrate series, where an isolated secondary hydroxyl group is involved, such a process would result in chlorodeoxy sugar derivatives with overall inversion of configuration, provided that the approach of the chloride ion is not sterically hindered. Further experiments are in progress in this laboratory utilizing additional model substance to establish the scope and stereochemical course of the chlorination reaction. [Pg.205]


See other pages where Inverse esters is mentioned: [Pg.162]    [Pg.843]    [Pg.169]    [Pg.464]    [Pg.162]    [Pg.843]    [Pg.169]    [Pg.464]    [Pg.160]    [Pg.295]    [Pg.346]    [Pg.378]    [Pg.178]    [Pg.480]    [Pg.214]    [Pg.243]    [Pg.38]    [Pg.110]    [Pg.81]    [Pg.2092]    [Pg.224]    [Pg.100]    [Pg.775]    [Pg.196]    [Pg.444]    [Pg.181]    [Pg.183]    [Pg.186]    [Pg.188]    [Pg.990]   
See also in sourсe #XX -- [ Pg.843 ]




SEARCH



Carboxylic acids, esters inversion-esterification

Ester inverse micelles

Kinetic Resolutions of Esters Combined with Inversions

© 2024 chempedia.info