Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Intestine lipoprotein synthesis

Levy E, Mehran M, Seidman E. Caco-2 cells as a model for intestinal lipoprotein synthesis and secretion. FASEB J 1995 May 9(8) 626- 635. [Pg.83]

In contrast to the extensive literature on the regulation of intestinal cholesterol synthesis, only a few studies are available on regulation of lipoprotein uptake in this organ. Notably, recent studies have compared the effect of various interventions such as the feeding of cholesterol, cholestyramine, surfomer, and com oil on both rates of cholesterol synthesis and LDL transport in the rat intestine in vivo, as shown in Fig. 9. While these various manipulations all alter rates of cholesterol synthesis, there is no consistent effect upon LDL uptake at any location in the mucosa, with the possible exception of a slight increase in the jejunum after feeding... [Pg.134]

Thus, in summary, it may be concluded that much of the cholesterol synthesized in the intestine is apparently used for local purposes. Under circumstances where there is no triglyceride absorption taking place essentially no newly synthesized sterol of intestinal origin can be detected in the lymphatic outflow from the gut. During active triglyceride absorption, however, the rate of sterol synthesis increases markedly in the intestinal absorptive cells, and a portion of this newly synthesized cholesterol is incorporated into chylomicrons and other intestinal lipoproteins and delivered into the lymph. Thus, both the rate of sterol synthesis by the intestine and the rate of entry of this sterol into the body pools is partially dictated by the rate of triglyceride absorption. [Pg.144]

Fatty liver developed in rats fed a diet containing orotic acid is characterized by the deposition of droplets of triglycerides in the tubules of the endoplasmic reticulum [297,298]. The reticulum breaks down into individual vesicles which contain lipid droplets 0.2-0.S im in diameter which accumulate the apolipoproteins of low and very low density lipoproteins. The liver otherwise appears to be functionally normal, unlike that of animals receiving other lipotrophic agents. The administration of orotic acid has a specific effect on lipoprotein synthesis without overall inhibition of protein synthesis. The effect is selective for hepatic but not intestinal P-lipoprotein production and triglyceride transport [299]. [Pg.31]

Figure 25-2. The formation and secretion of (A) chylomicrons by an intestinal cell and (B) very low density lipoproteins by a hepatic cell. (RER, rough endoplasmic reticulum SER, smooth endoplasmic reticulum G, Golgi apparatus N, nucleus C, chylomicrons VLDL, very low density lipoproteins E, endothelium SD, space of Disse, containing blood plasma.) Apolipoprotein B, synthesized in the RER, is incorporated into lipoproteins in the SER, the main site of synthesis of triacylglycerol. After addition of carbohydrate residues in G, they are released from the cell by reverse pinocytosis. Chylomicrons pass into the lymphatic system. VLDL are secreted into the space of Disse and then into the hepatic sinusoids through fenestrae in the endothelial lining. Figure 25-2. The formation and secretion of (A) chylomicrons by an intestinal cell and (B) very low density lipoproteins by a hepatic cell. (RER, rough endoplasmic reticulum SER, smooth endoplasmic reticulum G, Golgi apparatus N, nucleus C, chylomicrons VLDL, very low density lipoproteins E, endothelium SD, space of Disse, containing blood plasma.) Apolipoprotein B, synthesized in the RER, is incorporated into lipoproteins in the SER, the main site of synthesis of triacylglycerol. After addition of carbohydrate residues in G, they are released from the cell by reverse pinocytosis. Chylomicrons pass into the lymphatic system. VLDL are secreted into the space of Disse and then into the hepatic sinusoids through fenestrae in the endothelial lining.
The liver plays a decisive role in the cholesterol metabolism. The liver accounts for 90% of the overall endogenic cholesterol and its esters the liver is also impli-cated in the biliary secretion of cholesterol and in the distribution of cholesterol among other organs, since the liver is responsible for the synthesis of apoproteins for pre-p-lipoproteins, a-lipoproteins, and P-lipoproteins which transport the secreted cholesterol in the blood. In part, cholesterol is decomposed by intestinal micro-flora however, its major part is reduced to coprostanol and cholestanol which, together with a small amount of nonconverted cholesterol, are excreted in the feces. [Pg.209]

Synthesis of lipids from carbohydrates is an efficient process, which occurs largely in the liver and also in intestinal epithelial cells.6 The newly synthesized triacylglycerols, together with smaller amounts of phospholipids and cholesterol, combine with specific apolipoproteins, which are also synthesized in the liver, to form very low density lipoprotein (VLDL) particles which are secreted into the blood stream. [Pg.1181]

In summary, the consumption of garlic appears to reduce serum cholesterol in experimental animals in a dose-dependent fashion. This may be due to decreased synthesis or increased excretion of cholesterol through the intestinal tract. It has been reported that garlic consumption increases high-density lipoprotein (HDL) levels, which may help to remove excess cholesterol from arterial tissue. [Pg.483]

Third, acyl-CoA cholesterol acyltransferase (ACAT) [EC 2.3.1.26], an enzyme that works after the formation of cholesterol, was considered a unique target of inhibition [32], ACAT catalyzes the synthesis of cholesteiyl esters from cholesterol and long-chain fatty acyl-CoA. ACAT plays important roles in the body, for example, in the absorption of dietary cholesterol from the intestines, production of lipoprotein in liver and formation of foam cells from macrophages in arterial walls. Therefore, ACAT inhibition is expected not only to lower plasma cholesterol levels but also to have a direct effect at the arterial wall. A number of synthetic ACAT inhibitors such as ureas, imidazoles, and acyl amides have been developed [33], Several groups have searched for novel ACAT inhibitors... [Pg.345]

Chylomicrons are triglyceride rich and contain apolipoprotein B-48 and the A types. The latter are synthesized in the intestinal tract cells. Additional apoproteins are transferred to the chylomicrons from HDL in circulation the apoE and apoC types. Their site of synthesis is the liver. The chylomicrons are subject to degradation by lipoprotein lipase in the peripheral tissue, especially adipose tissue. Lipoprotein lipase activity is increased by increased blood insulin levels. This enzyme is extracellular, attached to the capillary endothelial cells, and activated by ApoC-II, which is present in the chylomicrons. Lipoprotein lipase causes the hydrolysis of triglycerides, thus decreasing chylomicron size... [Pg.502]

In ABL, an early step in apoB lipoprotein assembly shared by intestinal and liver cells is defective. The net result is near absence of all plasma apoB lipoproteins. ApoB synthesis from a mRNA transcript occurs, but its successful assembly into the mature lipoprotein particle does not. The inability to assemble apoB into lipoproteins was shown to be due to a defect in the mttp gene in affected individuals (Wetterau et al., 1992). Its translational product is an 894-amino acid, 97-kd, polypeptide that exists in the ER complexed with a 55-kd protein disulfide isomerase which is believed to maintain solubility, physiologic activity, and ER retention of the 97-kd peptide. The heterodimeric complex of the 97-kd and 55-kd subunits is referred to as microsomal triglyceride transfer protein (MTP) (Wetterau et al., 1992). [Pg.296]

ACAT transfers amino-acyl groups from one molecule to another. ACAT is an important enzyme in bile acid synthesis, and catalyses the intracellular esterification of cholesterol and formation of cholesteryl esters. ACAT-mediated esterification of cholesterol limits its solubility in the cell membrane and thus promotes accumulation of cholesterol ester in the fat droplets within the cytoplasm this process is important in preventing the toxic accumulation of free cholesterol that would otherwise damage ceU-membrane structure and function. Most of the cholesterol absorbed during intestinal transport undergoes ACAT-mediated esterification before incorporation into chylomicrons. In the liver, ACAT-mediated esterification of cholesterol is involved in the production and release of apo-B-containing lipoproteins. [Pg.102]

Cholesterol is an extremely important biological molecule that modulates the fluidity of animal cell membranes and is the precursor of steroid hormones (such as progesterone, testosterone, oestradiol and cortisol) and bile acids. Cholesterol is either derived from the diet or synthesised de novo. Regardless of the source, cholesterol is transported through the circulation in lipoprotein particles, as are cholesterol esters, the cellular storage form of cholesterol. The amount of cholesterol synthesised daily in the liver of a normal person is usually double that obtained from dietary sources. Other sites of cholesterol synthesis include the intestine, and the degree of production is highly responsive to cellular levels of cholesterol. Over 1.2 g of cholesterol is lost in the faeces daily in the form of free sterol or as bile acids. [Pg.33]


See other pages where Intestine lipoprotein synthesis is mentioned: [Pg.51]    [Pg.579]    [Pg.2321]    [Pg.1777]    [Pg.433]    [Pg.448]    [Pg.131]    [Pg.508]    [Pg.68]    [Pg.346]    [Pg.347]    [Pg.25]    [Pg.346]    [Pg.347]    [Pg.184]    [Pg.43]    [Pg.512]    [Pg.1041]    [Pg.240]    [Pg.323]    [Pg.159]    [Pg.126]    [Pg.346]    [Pg.211]    [Pg.271]    [Pg.295]    [Pg.279]    [Pg.288]    [Pg.218]    [Pg.295]    [Pg.169]    [Pg.190]    [Pg.1078]    [Pg.1078]    [Pg.1079]    [Pg.1179]    [Pg.579]   
See also in sourсe #XX -- [ Pg.469 , Pg.470 ]




SEARCH



Lipoprotein synthesis

© 2024 chempedia.info