Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interstellar Medium molecules

Because of the very low densities and temperatures prevalent in the interstellar medium, molecules cannot be formed by the same processes that produce them on earth. Astrochemistry appears to be dominated by three chemical reaction regimes ion-molecule, grain surface, and shock chemistry. [Pg.189]

Turner, B. E. (1992). Interstellar Medium, Molecules. In The Astronomy Astrophysics Encyclr redia (S. Maran and C. Sagan, eds.), p. 378, The Astronomy andAstrophysics Encyclopedia, van Nostrand, New York. [Pg.196]

In the dense interstellar medium characteristic of sites of star fonuation, for example, scattering of visible/UV light by sub-micron-sized dust grains makes molecular clouds optically opaque and lowers their internal temperature to only a few tens of Kelvin. The thenual radiation from such objects therefore peaks in the FIR and only becomes optically thin at even longer wavelengths. Rotational motions of small molecules and rovibrational transitions of larger species and clusters thus provide, in many cases, the only or the most powerfiil probes of the dense, cold gas and dust of the interstellar medium. [Pg.1233]

To date, researchers have identified more than 100 different molecules, composed of up to 13 atoms, in the interstellar medium [16]. Most were initially detected at microwave and (sub)millimetre frequencies, and the discoveries have reached far beyond the mere existence of molecules. Newly discovered entities such as difhise mterstellar clouds, dense (or dark) molecular clouds and giant molecular cloud complexes were characterized for the first time. Indeed, radioastronomy (which includes observations ranging from radio to submillunetre frequencies) has dramatically changed our perception of the composition of the universe. Radioastronomy has shown that most of the mass in the interstellar medium is contained in so-called dense... [Pg.1240]

Table 5.2 lists some of the molecules which have been detected. It is interesting to note that some of them, such as the linear triatomics C2H, HCO and N2H, were found in the interstellar medium before they were searched for and found in the laboratory. In all molecules, except OH and NH3, the transitions observed are rotational in nature. [Pg.120]

Identification of a molecule known in the laboratory is usually unambiguous because of the uniqueness of the highly precise transition frequencies. However, before frequencies detected in the interstellar medium can be compared with laboratory frequencies they must be corrected for the Doppler effect (see Section 2.3.2) due to the motion of the clouds. In Sagittarius B2 the molecules are found to be travelling fairly uniformly with a velocity of... [Pg.120]

Table 5.2 shows that quite large molecules, of which the cyanopolyacetylenes form a remarkable group, have been detected. The presence of such sizeable molecules in the interstellar medium came as a considerable surprise. Previously, it was supposed that the ultraviolet radiation present throughout all galaxies would photodecompose most of the molecules, and particularly the larger ones. It seems likely that the dust particles play an important part not only in the formation of the molecules but also in preventing their decomposition. [Pg.121]

And over all, as time and studies around this new interstellar component increase, it reveals to be possibly related to the polycyclic aromatic hydocarbon family (PAHs), those controversial molecules of prime interest which could be omnipresent in the interstellar medium and an essential link between simple molecules and grains. [Pg.401]

The first question to ask about the formation of interstellar molecules is where the formation occurs. There are two possibilities the molecules are formed within the clouds themselves or they are formed elsewhere. As an alternative to local formation, one possibility is that the molecules are synthesized in the expanding envelopes of old stars, previously referred to as circumstellar clouds. Both molecules and dust particles are known to form in such objects, and molecular development is especially efficient in those objects that are carbon-rich (elemental C > elemental O) such as the well-studied source IRC+10216.12 Chemical models of carbon-rich envelopes show that acetylene is produced under high-temperature thermodynamic equilibrium conditions and that as the material cools and flows out of the star, a chemistry somewhat akin to an acetylene discharge takes place, perhaps even forming molecules as complex as PAHs.13,14 As to the contribution of such chemistry to the interstellar medium, however, all but the very large species will be photodissociated rapidly by the radiation field present in interstellar space once the molecules are blown out of the protective cocoon of the stellar envelope in which they are formed. Consequently, the material flowing out into space will consist mainly of atoms, dust particles, and possibly PAHs that are relatively immune to radiation because of their size and stability. It is therefore necessary for the observed interstellar molecules to be produced locally. [Pg.5]

What is the ultimate fate of the molecular material formed in the envelopes of carbon-rich stars as it heads out into space The dust grains will be processed only slowly by the interstellar radiation held and survive almost intact until they become part of an interstellar cloud. The survival of individual PAHs depends on their size the larger ones withstand radiation much better than do the smaller ones.115 By survival we are referring to the aromatic skeleton the interstellar radiation field will efficiently break H bonds and cause ionization so that unsaturated, ionized PAHs are likely to dominate those found in the diffuse interstellar medium. Such species have been suggested as a source of the DIBs.118,123 Small molecules photodissociate in the interstellar radiation field before the material becomes part of an interstellar cloud. [Pg.37]

Ehrenfreund, P. and Charnley, S.B. (2000). Organic molecules in the interstellar medium, comets and meteorites. Annu. Rev. Astron. Astrophy., 38, 427-483... [Pg.76]

Chemistry without numbers is poetry astrochemistry without numbers is myth. A molecule placed around a star, in a nebula, lost in the interstellar medium, on a planet or within a cell has the potential for very complex and beautiful chemistry but unless we can understand the local conditions and how the molecule interacts with them we have no idea what chemistry is really happening. To understand astrochemistry we need to understand the physical conditions that occur within many diverse molecular environments. The exploration of the molecular universe will take us on a long journey through the wonders of astronomy to the new ideas of astrobiology... [Pg.1]

The temperature of a molecule within any astronomical environment may vary from the intense cold of the interstellar medium with a temperature of 10 K to the temperature within a sun spot 4000 K close to the temperature at which a molecule would fall apart. The relative intensity of transitions along the progression is given by a line strength factor ... [Pg.70]

Energy levels within an atom or molecule can be populated in several ways to produce more target species in the higher energy excited state than in the ground state. The population can occur by collisional processes such as between molecules in the interstellar medium and a balance can occur between the excitation process and a number of deactivation processes (Figure 3.17a). The population of level 2 can be subjected to ... [Pg.77]

A recent success in the detection of H species has been that of the molecular ion H3+. All of the models of ion-molecule chemistry in hydrogen-dominated regions are controlled by reactions of H3+ but until recently the H2+ molecular ion had not been detected. However, the modes of vibration of H3"1" provide for an allowed IR transition at 3.668 pin used for its detection. These ro-vibrational transitions have now been observed in a number of places, including the interstellar medium and in the aurorae of Jupiter. Not all astronomical detection and identification problems have been solved, however, and the most annoying and compelling of these is the problem of diffuse interstellar bands. [Pg.79]

The interstellar medium is thus a chemically diverse medium fed nearly all of the chemical elements by supernova explosions. Conditions in the interstellar medium produce a cocktail of molecules that ultimately find themselves back on the surface of planets during the formation of the new star and solar system. Does the interstellar medium seed life with molecules from space The nature of interstellar medium chemistry might then add credibility to the formation of life in many places within the Universe and act as a panspermia model for the origins of life. [Pg.109]

Diffuse interstellar medium The most tenuous regions of space with perhaps one molecule per cm3. [Pg.310]

Interstellar medium (ISM) The tenuous medium between the stars with molecular densities as low as 1 molecule cm-3 rising to 106 molecules cm-3 in giant molecular clouds. Temperatures may be as low as 10-40 K. [Pg.312]

Ion-molecule reaction Reactions between ions and molecules with characteristically low activation energies that are important in the interstellar medium. [Pg.312]

A comprehensive book series which encompasses the complete coverage of carbon materials and carbon-rich molecules from elemental carbon dust in the interstellar medium to the most specialized industrial applications of elemental carbon and its derivatives. A great emphasis is placed on the most advanced and promising applications ranging from electronics to medicinal chemistry. The aim is to offer the reader a book series which not only consists of self-sufficient reference works, but one which stimulates further research and enthusiasm. [Pg.411]

The gaseous component is made up of a mixture of atoms and molecules which may be either ionised or electrically neutral. Despite its modest proportions, the dust component plays a determining role in the thermodynamics and chemistry of the interstellar medium and in the star formation process that subsequently governs the whole evolution of the Galaxy. [Pg.111]

The explosion of a supernova is a very happy event. It results in the spherical propulsion of matter into the interstellar medium, matter that has been simmering over millions of years, spiced up in the final moments by a little explosion and radioactivity. In the medium that lies between the stars, temperatures and densities are much lower than in stellar objects themselves. The supernova matter is diluted and cools down. Nuclei in the expelled material capture electrons to form various atoms and molecules. The cycle... [Pg.168]


See other pages where Interstellar Medium molecules is mentioned: [Pg.263]    [Pg.472]    [Pg.320]    [Pg.3]    [Pg.14]    [Pg.32]    [Pg.42]    [Pg.48]    [Pg.51]    [Pg.62]    [Pg.66]    [Pg.151]    [Pg.151]    [Pg.153]    [Pg.330]    [Pg.193]    [Pg.113]    [Pg.47]    [Pg.48]    [Pg.826]    [Pg.2]    [Pg.25]    [Pg.127]    [Pg.354]    [Pg.366]    [Pg.367]   
See also in sourсe #XX -- [ Pg.155 ]




SEARCH



Interstellar

Medium interstellar

Molecules in the Interstellar Medium

Molecules in the interstellar and circumstellar medium

Prebiotic molecules in the interstellar medium

Some important molecules detected in the interstellar medium

© 2024 chempedia.info