Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Intermediate form

Nitromethane is more easily prepared by heating together equimolecular amounts of sodium monochloroacetate and sodium nitrite in aqueous solution sodium nitroacetate is intermediately formed and is decomposed to nitromethane and sodium bicarbonate. The latter yields sodium carbonate and carbon dioxide at the temperature of the reaction. [Pg.302]

The acid may also be prepared by the condensation of furfural with malonic acid in the presence of pyridine fiiiylmalonic acid is intermediately formed, which is decomposed upon heating In the presence of the base ... [Pg.834]

The indole skeleton can also be constructed by Pd-mediated cyclization of A -propargyl-n-haloanilines. The vinylpalladium intermediates formed in the cyclization are sufficiently stable to permit further rcaction[4,5]. For example. [Pg.36]

There are also palladium-catalysed procedures for allylation. Ethyl 3-bromo-l-(4-methylphenylsulfonyl)indole-2-carboxylate is allylated at C3 upon reaction with allyl acetate and hexabutylditin[27], Ihe reaction presumably Involves a ir-allyl-Pd intermediate formed from the allyl acetate, oxidative addition, transmetallation and cross coupling. [Pg.108]

As we have just seen the rate determining intermediate m the reaction of tert butyl alco hoi with hydrogen chloride is the carbocation (CH3)3C Convincing evidence from a variety of sources tells us that carbocations can exist but are relatively unstable When carbocations are involved m chemical reactions it is as reactive intermediates formed slowly m one step and consumed rapidly m the next one... [Pg.160]

The free radicals that we usually see in carbon chemistry are much less stable than these Simple alkyl radicals for example require special procedures for their isolation and study We will encounter them here only as reactive intermediates formed m one step of a reaction mechanism and consumed m the next Alkyl radicals are classified as primary secondary or tertiary according to the number of carbon atoms directly attached to the carbon that bears the unpaired electron... [Pg.168]

Write a structural formula for the carbocation intermediate formed in the dehydration of each of the alcohols in Problem 5 14 (Section 5 10) Using curved arrows show how each carbocation is deprotonated by water to give a mixture of alkenes... [Pg.206]

The mechanism includes two single electron transfers (steps 1 and 3) and two proton transfers (steps 2 and 4) Experimental evidence indicates that step 2 is rate determining and it is believed that the observed trans stereochemistry reflects the dis tribution of the two stereoisomeric alkenyl radical intermediates formed in this step... [Pg.377]

FIGURE 12 7 The mechanism of Friedel-Crafts alkylation The molecular model depicts the cyclohexadienyl cation intermediate formed in step 1... [Pg.482]

None of the three major resonance forms of the intermediate formed by attack at the meta position has a positive charge on the carbon bearing the —CF3 group... [Pg.493]

C 1 IS more reactive because the intermediate formed by electrophilic attack there IS a relatively stable carbocation A benzene type pattern of bonds is retained m one nng and the positive charge is delocalized by allylic resonance... [Pg.506]

Wnte a structural formula for the most stable cyclohexadienyl cation intermediate formed in each of the following reactions Is this intermediate more or less stable than the one formed by electrophilic attack on benzene" ... [Pg.513]

Step 2 Proton transfer from water to the intermediate formed m step 1... [Pg.716]

Write structural formulas corresponding to the intermediates formed in the con (jugate addition step and in the aldol addition step ... [Pg.779]

Write the structure of the tetrahedral intermediate formed in each of the reactions given in Problem 20 7... [Pg.845]

The intermediate formed m the nucleophilic addition step abstracts a proton from the solvent to give the observed product... [Pg.902]

Phenolic compounds are commonplace natural products Figure 24 2 presents a sampling of some naturally occurring phenols Phenolic natural products can arise by a number of different biosynthetic pathways In animals aromatic rings are hydroxylated by way of arene oxide intermediates formed by the enzyme catalyzed reaction between an aromatic ring and molecular oxygen... [Pg.1001]

Arenium ion (Section 12 2) The carbocation intermediate formed by attack of an electrophile on an aromatic substrate in electrophilic aromatic substitution See cyclohexadienyl cation... [Pg.1276]

Triprotic Acids and Bases, and Beyond The treatment of a diprotic acid or base is easily extended to acids and bases having three or more acid-base sites. For a triprotic weak acid such as H3PO4, for example, we can treat H3PO4 as if it was a mono-protic weak acid, H2P04 and HP04 as if they were intermediate forms of diprotic weak acids, and P04 as if it was a monoprotic weak base. [Pg.165]

We treat HP04 as the intermediate form of a diprotic weak acid... [Pg.165]

The P-halo ketone intermediates formed in the foregoing reactions arise from the capture of carbocationic intermediates by halide of the gegenions. In some cases, solvents such as acetonitrile can act as the competing nucleophilic species. For example, P-amido ketones could be obtained by the acylation of alkenes in acetonitrile (172). [Pg.562]

Total hafnium available worldwide from nuclear zirconium production is estimated to be 130 metric tons annually. The annual usage, in all forms, is about 85 t. The balance is held in inventory in stable intermediate form such as oxide by the producers Teledyne Wah. Chang (Albany, Oregon) and Western Zirconium in the United States Ce2us in France Prinieprovsky Chemical Plant in Ukraine and Chepetsky Mechanical Plant in Russia (crystal bar). [Pg.443]

The intermediate formed in the oxidation of alkenes by permanganate ion is considered a cycHc manganate(V) ester (92). Investigations have suggested that manganate(V) intermediates play a significant role in virtually all permanganate oxidation reactions. It is therefore the further reactions of the... [Pg.514]

The red tetrathiomolybdate ion appears to be a principal participant in the biological Cu—Mo antagonism and is reactive toward other transition-metal ions to produce a wide variety of heteronuclear transition-metal sulfide complexes and clusters (13,14). For example, tetrathiomolybdate serves as a bidentate ligand for Co, forming Co(MoSTetrathiomolybdates and their mixed metal complexes are of interest as catalyst precursors for the hydrotreating of petroleum (qv) (15) and the hydroHquefaction of coal (see Coal conversion processes) (16). The intermediate forms MoOS Mo02S 2> MoO S have also been prepared (17). [Pg.470]

The mechanism of the cobalt-cataly2ed oxo reaction has been studied extensively. The formation of a new C—C bond by the hydroformylation reaction proceeds through an organometaUic intermediate formed from cobalt hydrocarbonyl which is regenerated in the aldehyde-forrning stage. The mechanism (5,6) for the formation of propionaldehyde [123-38-6] from ethylene is illustrated in Figure 1. [Pg.466]

Both prototypal questions related illustrate the need for a successhil technical service professional to have a strong understanding of the customer s apphcations and processes, within proper intellectual property considerations. This need for a thorough understanding is not always straightforward. A common example of the complications that can arise is provided from the paint (qv) industry (11). If, for instance, a calcium carbonate suppHer would like a paint manufacturer to use their material versus a competitive one, the onus is on the suppHer to show that the material can be successfully used in the paint formula of interest. However, many such formulas are held as proprietary. The technical service professional therefore does not know the components of the paint. This would lead to an unworkable situation from an evaluation standpoint save for the fact that the paint company may supply a miHbase or other intermediate form of the paint to allow a proper comparison of carbonates to be carried out. Thus mutual benefits can result and no loss of proprietary information occur. [Pg.378]

These equations are based on the thermodynamically stable species. Further research is needed to clarify the actual intermediate formed during overcharge. In reahty, the oxygen cycle can not be fully balanced because of other side reactions, that include gtid corrosion, formation of residual lead oxides in the positive electrode, and oxidation of organic materials in the cell. As a result, some gases, primarily hydrogen and carbon dioxide (53), are vented. [Pg.575]

The composition of the products of reactions involving intermediates formed by metaHation depends on whether the measured composition results from kinetic control or from thermodynamic control. Thus the addition of diborane to 2-butene initially yields tri-j iAbutylboraneTri-j -butylborane. If heated and allowed to react further, this product isomerizes about 93% to the tributylborane, the product initially obtained from 1-butene (15). Similar effects are observed during hydroformylation reactions however, interpretation is more compHcated because the relative rates of isomerization and of carbonylation of the reaction intermediate depend on temperature and on hydrogen and carbon monoxide pressures (16). [Pg.364]

Thermal Decomposition of GIO2. Chloiine dioxide decomposition in the gas phase is chaiacteiized by a slow induction period followed by a rapid autocatalytic phase that may be explosive if the initial concentration is above a partial pressure of 10.1 kPa (76 mm Hg) (27). Mechanistic investigations indicate that the intermediates formed include the unstable chlorine oxide, CI2O2. The presence of water vapor tends to extend the duration of the induction period, presumably by reaction with this intermediate. When water vapor concentration and temperature are both high, the decomposition of chlorine dioxide can proceed smoothly rather than explosively. Apparently under these conditions, all decomposition takes place in the induction period, and water vapor inhibits the autocatalytic phase altogether. The products of chlorine dioxide decomposition in the gas phase include chlorine, oxygen, HCl, HCIO, and HCIO. The ratios of products formed during decomposition depend on the concentration of water vapor and temperature (27). [Pg.481]


See other pages where Intermediate form is mentioned: [Pg.223]    [Pg.196]    [Pg.23]    [Pg.254]    [Pg.479]    [Pg.481]    [Pg.485]    [Pg.490]    [Pg.501]    [Pg.819]    [Pg.840]    [Pg.858]    [Pg.865]    [Pg.893]    [Pg.981]    [Pg.982]    [Pg.402]    [Pg.201]    [Pg.512]    [Pg.267]    [Pg.114]   


SEARCH



Adsorption Isotherms for Intermediates Formed by Charge Transfer

Alkene addition reactions forming carbocation intermediates

Behavioral Intermediate Form

Bonding intermediate forms

Carbocation intermediate forming

Enzyme activation intermediate forms during catalysis

Intermediate form diprotic acid

Intermediate resonance form

Liquid dosage forms intermediate

Polysaccharide intermediate forms

Reactions of Intermediates Formed in Electrode Processes

Reactive intermediates formed by ionizing radiation in polymers

Sequencing Intermediate Form

Structure/Logic Intermediate Form

Unstable intermediates formed by irradiation at room temperature

Weak acid intermediate form

© 2024 chempedia.info